The present invention is directed to overhead storage products that utilize unused ceiling space to create additional storage in homes. More specifically, the present invention is directed to a modular overhead storage system having a horizontal bike/package lift and motorized lift system that utilizes a plurality of C-mount support bracket members for supporting the side rails of a rack member.
There are many houses with a two car garage that have never had two cars in them. Instead of using that space to shield cars from the sun and harsh weather, the garage has become home to a collection of gardening and lawn equipment, tools, woodworking equipment, cast-off furniture and things that are no longer used, but are not throw away. Finding items that are needed in a cluttered garage is a complicated process. Usually, it starts with edging between the stacks of boxes and miscellaneous equipment. If the home owner is lucky, they may remember where this particular item was last, or which box it may be located. More often, it becomes a process of elimination that involves knowing what went into the garage during which time period and playing ‘hot, hot, cold’ until that person stumbles upon what they're trying to locate. Overhead garage storage can transform unused space in a garage into fully functional storage space. Whether looking to store holiday decorations, sports equipment or mementos, these items can easily fit in a garage if the proper storage racks are in place.
In one embodiment, an overhead storage system is provided comprising an overhead rack system, a motorized lift system and a horizontal storage system. The overhead rack system has a plurality of rack mounting tracks configured for securing the overhead rack system to the ceiling joists of a structure. The rack system also includes a rack member having a first side rail platform and a second side rail platform. The first and second side rail platforms are coupled together by a plurality of rail connectors to form a substantially rectangular frame member. The substantially rectangular frame member has a channel running along its perimeter that is configured to receive and support a drop-in grid assembly that is for supporting items to be stored thereon. The rack system further includes a plurality of support bracket members coupled to the plurality of mounting tracks, configured to attach to the rack member.
The horizontal storage system is comprised of a storage system mounting track, a plurality of upper beam members, a plurality of lower beam members and a base channel assembly. The storage system mounting track is configured for securing the overhead rack system to the overhead rack system. The plurality of upper beam members is secured to the storage system mounting track. The plurality of lower beam members is pivotally connected to the plurality of upper beam members using a cam and channel assembly and spring-assist lift system. The base channel assembly is coupled to the plurality of lower beam members for supporting items when moving the horizontal storage system between a substantially vertical loading position and a substantially horizontal storing position.
The motorized lift system has a lift platform, a motor and winch assembly and a track rail. The lift platform is configured to receive an item to be stored on the rack member of the overhead rack system. The lift platform also has a stabilizer edge for engaging the side rail platforms of the rack member. The motor and winch assembly has a plurality of truck wheels and a cable disposed therein. The cable is coupled to the lift platform. The motor and winch assembly is operable to move the lift platform between a loading position and an unloading position adjacent the rack member of the overhead rack system. The tack rail is mounted adjacent the rack member of the overhead rack system and configured to receive the truck wheels of the motor and winch assembly. The track rail is configured to provide a guide for moving the lift platform along the length of one side of the substantially rectangular frame member.
In the following description, numerous specific details are set forth, such as examples of the overhead rack system, bike lift system, package lift system and motorized lift system, in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well known components or methods have not been described in detail but rather in a general manner in order to avoid unnecessarily obscuring the present invention. Thus, the specific details set forth are merely exemplary. The specific details may be varied from and still be contemplated to be within the spirit and scope of the present invention.
It should be appreciated that reference throughout this specification to “one embodiment” or “an embodiment” or “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment may be included, if desired, in at least one embodiment of the present invention. Therefore, it should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” or “one example” or “an example” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as desired in one or more embodiments of the invention. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
In the illustrated embodiment of
Rack member 103 comprises a first side rail platform 190 coupled to a second side rail platform 195 using a plurality of rail connectors 101, 102. The rack member 103 is configured to support any number of differing sized items utilizing one or more drop-in grid assembly 111, 112. The strength of the connection formed by rail connectors 101, 102 provides the means to allow the rack member 103 to be shipped in a smaller container, since a single side rail member running the length of the first an second side rail platform would be twice as long as shipping them separate and connecting them together using the firs rail connector 101 and second rail connector 102.
A plurality of C-mount support bracket members 185, 186, 187, 188 are coupled to one end of the respective lower extension assembly 130, 145, 160, 175 for joining the four mounting tracks 105, 110, 115, 120 to the rack member 103.
In the embodiment of
In the illustrated embodiment, lower extension assembly 145 and upper bracket member 140 are constructed of square tubing with a plurality of holes configured to receive a plurality of bolt assemblies (not shown). The square tubing of the upper bracket member 140 is sized to be slightly larger in diameter than the square tubing of the lower extension assembly 145 so that the lower extension assembly 145 fits within the upper bracket member 140 and is configured to move relative thereto in a telescoping manner. The telescoping relationship between the upper bracket member 140 of fixed mounting track member 110 relative to the lower extension assembly 145 allows a user to adjust the distance between the ceiling and the second side rail platform 195 of rack member 103. The bolt assemblies are mounted through matching holes in each, so as to secure the lower extension assembly 145 to the upper bracket member 140 in a user chosen position and thus form a single, rigid mounting track member 110 from the multi-piece construction of parts. A similar construction is contemplated for mounting track 105, which is also coupled to the second side rail platform 195 of rack member 103.
Continuing with the illustrated embodiment of
In the illustrated embodiment, lower extension assembly 175 and upper bracket member 170 are constructed of square tubing with a plurality of holes configured to receive a plurality of bolt assemblies (not shown). The square tubing of the upper bracket member 170 is sized to be slightly larger in diameter than the square tubing of the lower extension assembly 175 so that the lower extension assembly 175 fits within the upper bracket member 170 and is configured to move relative thereto in a telescoping manner. The telescoping relationship between the upper bracket member 170 of fixed mounting track member 120 relative to the lower extension assembly 175 allows a user to adjust the distance between the ceiling and the first side rail platform 190 of rack member 103. The bolt assemblies are mounted through matching holes in each, so as to secure the lower extension assembly 145 to the upper bracket member 140 in a user chosen position and thus form a single, rigid mounting track member 110 from the multi-piece construction of parts. A similar construction is contemplated for mounting track 115, which is also coupled to the first side rail platform 190 of rack member 103.
Unlike bike racks that simply hang the bike from the ceiling or wall, the horizontal bike storage system 200 folds a bike flat against the ceiling or bottom of overhead rack system 100, and, in the illustrated embodiment, occupies approximately 20-26 inches of hanging ceiling space. Furthermore, the spring-assist lift system ensures that the user will easily be able to fold a bike to the ceiling, making this bike storage system extremely compact and easy to use. The horizontal bike storage system 200 is ideal for low profile ceilings, as it keeps the bike folded flat to the ceiling. Such an arrangement allows for more garage clearance, and utilizes un-used garage ceiling space.
As illustrated in the perspective view of
As shown in the illustrated embodiment, upper beam member 210 is pivotally connected to lower beam member 205 using a cam and channel assembly 240. Similarly, upper beam member 211 is pivotally connected to lower beam member 206 using a cam and channel assembly 235. Cam and channel assembly 235 comprises a first cam member 236 that is, in the illustrated embodiment, welded to the lower beam member 206 and a first channel member 237 that is, in the illustrated embodiment, welded to upper beam member 211. The first cam member 236 fits within and rotates relative to the first channel member 237, thereby allowing lower beam member 206 to rotate relative to upper beam member 211. First cam member 236 is held in place relative to first channel member 237 by a pin assembly (not shown). Cam and channel assembly 240 comprises a first cam member 241 that is, in the illustrated embodiment, welded to the lower beam member 205 and a first channel member 242 that is, in the illustrated embodiment, welded to upper beam member 210. The first cam member 241 fits within and rotates relative to the first channel member 242, thereby allowing lower beam member 205 to rotate relative to upper beam member 210. First cam member 241 is held in place relative to first channel member 242 by a pin assembly (not shown).
The horizontal bike storage system 200 additionally comprises a spring-assist lift system to assist the user from moving the horizontal bike storage system 200 from a substantially vertical position when loading a bike, to a substantially horizontal position when storing the bike. Spring-assist lift system is generally comprised of a plurality of springs 230, 231 coupled to the upper beam members 210, 211 and the lower beam members 205, 206 by a plurality of ring assemblies 245, 246, 247, 248, generally comprising a plurality of shafted eye bolts and locking nuts.
In the illustrated embodiment, the first spring-assist lift system of the horizontal bike storage system 200 is comprised of a first spring assembly 231 coupled to the upper beam member 211 using a first ring assembly 247 and coupled to the lower beam member 206 using a second ring assembly 245. In one embodiment, the hole distance for the first ring assembly 247 on the upper beam member 211 is 12″ from the mounting track 215, and the hole distance for the second ring assembly 245 on the lower beam member 206 is 12″ from the cam and channel assembly 235. Similarly, the second spring-assist lift system of the horizontal bike storage system 200 is comprised of a second spring assembly 230 coupled to the upper beam member 210 using a first ring assembly 248 and coupled to the lower beam member 205 using a second ring assembly 246. In one embodiment, the hole distance for the first ring assembly 248 on the upper beam member 210 is 12″ from the mounting track 215, and the hole distance for the second ring assembly 246 on the lower beam member 205 is 12″ from the cam and channel assembly 240.
In operation, the first spring assembly 230 of the first spring-assist lift system would expand in the substantially vertical position and contract in the substantially horizontal position when the upper beam member 210 is pivoted relative to lower beam member 205 using cam and channel assembly 240. Similarly, the second spring assembly 231 of the second spring-assist lift system would expand in the substantially vertical position and contract in the substantially horizontal position when the upper beam member 211 is pivoted relative to lower beam member 206 using cam and channel assembly 235. In this manner, the cam and channel assembly and the first and second spring-assist lift systems operate together to assist the user from moving the horizontal bike storage system 200 from a substantially vertical loading position shown in
In the illustrated embodiment, the horizontal bike storage system 200 has the capability of telescoping to increase or decrease its overall size. In the illustrated embodiment, lower extender 260 and lower beam member 206 are constructed of square tubing with a plurality of holes configured to receive a plurality of bolt assemblies (not shown). The square tubing of the lower beam member 206 is sized to be slightly larger in diameter than the square tubing of the lower extender 260 so that the lower extender 260 fits within the lower beam member 206 and is configured to move relative thereto in a telescoping manner. Similarly, lower extender 265 and lower beam member 205 are constructed of square tubing with a plurality of holes configured to receive a plurality of bolt assemblies (not shown). The square tubing of the lower beam member 205 is sized to be slightly larger in diameter than the square tubing of the lower extender 265 so that the lower extender 265 fits within the lower beam member 205 and is configured to move relative thereto in a telescoping manner The telescoping relationship between the lower beam members 205, 206 relative to the lower extenders 260, 265 allows a user to adjust the distance between the ceiling and the tire rail assembly 220.
As illustrated in the perspective view of
In the illustrated embodiment, the horizontal package storage system 300 has a package base assembly 335 that is comprised of a plurality of base members 340, 341, 343 and a lower weldment 342. The first lower beam members 315, 316 are joined to the second lower beam members 317, 318 by a plurality of vertical connectors 330, 331. The use of shorter beam members 315, 316, 317, 318 connected by the vertical connectors 330, 331 increases the overall strength of the individual pieces supporting the weight of the storage containers, thereby increasing the weight of the load that may be handled by the horizontal package storage system 300 when in the substantially horizontal storage position.
As shown in the illustrated embodiment, upper beam member 310 is pivotally connected to first lower beam member 315 using a cam and channel assembly 325. Similarly, upper beam member 311 is pivotally connected to first lower beam member 316 using a cam and channel assembly 326. Cam and channel assembly 325 comprises a first cam member 372 that is, in the illustrated embodiment, welded to the lower beam member 315 and a first channel member 371 that is, in the illustrated embodiment, welded to upper beam member 310. The first cam member 372 fits within and rotates relative to the first channel member 371, thereby allowing first lower beam member 315 to rotate relative to upper beam member 310. First cam member 372 is held in place relative to first channel member 371 by a pin assembly (not shown). Cam and channel assembly 326 comprises a first cam member 374 that is, in the illustrated embodiment, welded to the lower beam member 316 and a first channel member 373 that is, in the illustrated embodiment, welded to upper beam member 311. The first cam member 374 fits within and rotates relative to the first channel member 373, thereby allowing first lower beam member 316 to rotate relative to upper beam member 311. First cam member 374 is held in place relative to first channel member 373 by a pin assembly (not shown).
The horizontal package storage system 300 additionally comprises a spring-assist lift system to assist the user from moving the horizontal package storage system 300 from a substantially vertical position when loading storage containers, to a substantially horizontal position when storing the containers. Spring-assist lift system is generally comprised of a plurality of springs 350, 351 coupled to the upper beam members 310, 311 and the first lower beam members 315, 316. In the illustrated embodiment, the first spring-assist lift system of the horizontal package storage system 300 is comprised of a first spring assembly 351 coupled to the upper beam member 310 using a first ring assembly 357 and coupled to the first lower beam member 315 using a second ring assembly 356. Similarly, the second spring-assist lift system of the horizontal package storage system 300 is comprised of a second spring assembly 350 coupled to the upper beam member 311 using a first ring assembly 358 and coupled to the first lower beam member 315 using a second ring assembly 372.
In operation, the first spring assembly 351 of the first spring-assist lift system would expand in the substantially vertical position and contract in the substantially horizontal position when the upper beam member 310 is pivoted relative to first lower beam member 315 using cam and channel assembly 325. Similarly, the second spring assembly 350 of the second spring-assist lift system would expand in the substantially vertical position and contract in the substantially horizontal position when the upper beam member 311 is pivoted relative to lower beam member 316 using cam and channel assembly 326. In this manner, the cam and channel assembly and the first and second spring-assist lift systems operate together to assist the user from moving the horizontal package storage system 300 from a substantially vertical loading position shown in
As shown in
Lift platform 405 is constructed of a plurality of base members 427, a plurality of upright members 425, 426 and a plurality of top members 428. In the illustrated embodiment, lift platform 405 is a rectangular shape to accommodate oversized storage containers, however, any shape may be used in accordance with the scope and spirit of the present invention.
As shown in
While the methods disclosed herein have been described and shown with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form equivalent methods without departing from the teachings of the present invention. Accordingly, unless specifically indicated herein, the order and grouping of the operations is not a limitation of the present invention.
Similarly, it should be appreciated that in the foregoing description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects.
While the invention has been particularly shown and described with reference to various embodiments thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 13231864 | Sep 2011 | US |
Child | 14037122 | US | |
Parent | 12692361 | Jan 2010 | US |
Child | 13231864 | US |