1. Field
The present disclosure pertains to a method and mouthpiece for delivering nebulized medicament to the airway of a subject, and, in particular, to a removable mouthpiece that facilitates operation of a nebulizer in a breath assisted mode that is replaceable with a mouthpiece that facilitates operation of the same nebulizer in continuous use mode.
2. Description of the Related Art
The use of nebulizers to nebulize medicament for respiratory delivery to subjects is known. Various types of nebulizers are known. These types include continuous use nebulizers and breath assisted nebulizers. Generally, nebulizers are configured to operate either in continuous mode, or in breath assisted mode.
Continuous use nebulizers typically produce a substantially continuous flow of nebulized medicament for inhalation by a subject. A continuous use nebulizer generally provides a single flow path through which gas is provided to and received from the mouth of the subject. While these nebulizers tend to be efficient at delivering a stream of nebulized medicament, exhalation by the subject back into the nebulizer will usually result in nebulized medicament being exhausted from the nebulizer.
Breath assisted nebulizers are configured such that if a user exhales back into the nebulizer, the exhaled gas is exhausted from the nebulizer without permitting substantial communication between the exhaled gas and nebulized medicament present in the nebulizer and/or the mouthpiece thereof.
Accordingly, one or more aspects of the present disclosure relate to a mouthpiece configured to be removably coupled with a nebulizer to deliver nebulized medicament to the airway of a subject. In some embodiments, the mouthpiece comprises one or more of a nebulizer interface, a subject interface, a medicament flow path, an exhaust outlet, an exhaust flow path, an inlet valve, an exhaust valve. The nebulizer interface is configured to releasably engage an outlet of a nebulizer through which the nebulizer outputs nebulized medicament. The subject interface is configured to communicate the interior of the mouthpiece with the airway of the subject. The medicament flow path is configured to place the nebulizer interface in fluid communication with the subject interface to facilitate a flow of nebulized medicament from the nebulizer interface to the subject interface and into the airway of the subject through the subject interface. The exhaust flow path is configured to place the subject interface in fluid communication with the exhaust outlet to facilitate a flow of exhaled gas from the subject interface to the exhaust outlet and out of the mouthpiece through the exhaust outlet. The inlet valve is configured to communicate ambient air with the medicament flow path, wherein the inlet valve is a one-way valve that permits flow from ambient atmosphere into the medicament flow path. The exhaust valve controls gas flow within the exhaust flow path, wherein the outlet valve is a one-way valve that permits flow out of the exhaust outlet.
Yet another aspect of the present disclosure relates to a method of delivering nebulized medicament to the airway of a subject, wherein the method is implemented by a mouthpiece that is removable from a nebulizer In some embodiments, the method comprises releasably engaging an outlet of the nebulizer through which the nebulizer outputs nebulized medicament; guiding nebulized medicament from the outlet of the nebulizer to the airway of a subject through a medicament flow path during an inhalation by the subject; placing ambient atmosphere in fluid communication with the medicament flow path during the inhalation by the subject; stopping fluid communication of ambient atmosphere with the medicament flow path responsive to an end of the inhalation by the subject; receiving gas exhaled from the airway of the subject during an exhalation of the subject into an exhaust flow path; placing the exhaust flow path in communication with an exterior of the mouthpiece in response to the exhalation of the subject so that the exhaled gas can be exhausted from the mouthpiece through the exhaust flow path.
Still another aspect of present disclosure relates to a mouthpiece that is removable from a nebulizer and is configured to deliver nebulized medicament to the airway of a subject. In some embodiments, the mouthpiece comprises means for releasably engaging an outlet of the nebulizer through which the nebulizer outputs nebulized medicament; means for guiding nebulized medicament from the outlet of the nebulizer to the airway of a subject during an inhalation by the subject; means for placing ambient atmosphere in fluid communication with the medicament within the means for guiding during the inhalation by the subject; means for stopping fluid communication of ambient atmosphere with the means for guiding responsive to an end of the inhalation by the subject; means for receiving gas exhaled from the airway of the subject during an exhalation of the subject; means for placing the means for receiving in communication with an exterior of the mouthpiece in response to the exhalation of the subject so that the exhaled gas can be exhausted from the mouthpiece through the means for receiving.
These and other objects, features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the disclosure.
As used herein, the singular form of “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. As used herein, the statement that two or more parts or components are “coupled” shall mean that the parts are joined or operate together either directly or indirectly, i.e., through one or more intermediate parts or components, so long as a link occurs. As used herein, “directly coupled” means that two elements are directly in contact with each other. As used herein, “fixedly coupled” or “fixed” means that two components are coupled so as to move as one while maintaining a constant orientation relative to each other.
As used herein, the word “unitary” means a component is created as a single piece or unit. That is, a component that includes pieces that are created separately and then coupled together as a unit is not a “unitary” component or body. As employed herein, the statement that two or more parts or components “engage” one another shall mean that the parts exert a force against one another either directly or through one or more intermediate parts or components. As employed herein, the term “number” shall mean one or an integer greater than one (i.e., a plurality).
Directional phrases used herein, such as, for example and without limitation, top, bottom, left, right, upper, lower, front, back, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.
Nebulizer interface 14 is configured to releasable engage an outlet 20 of nebulizer 12. Outlet 20 of nebulizer 12 is the opening through which nebulizer 12 expels nebulized medicament for delivery to the subject. In order to engage outlet 20, nebulizer interface 14 may have a cross-sectional shape that corresponds to a cross-sectional shape of outlet 20. The releasable engagement between outlet 20 and nebulizer interface 14 may be accomplished via one or more of latch, snap, friction fit, threaded engagement, interconnecting protrusions and intrusions, and/or other releasably connecting mechanisms. The releasable engagement between outlet 20 and nebulizer interface 14 is such that mouthpiece 10 can be swapped out from outlet 20 for another mouthpiece, removed for cleaning, removed for storage, and/or released for other purposes, and then re-engaged for further use. Nebulizer interface 14 may be configured to releasably engage outlet 20 in the same, or substantially the same, manner in which a mouthpiece designed for continuous use would be engaged with outlet 20. This may enable nebulizer 12 to operate as both a continuous mode nebulizer (e.g., with the other mouthpiece), a breath assisted nebulizer (e.g., with mouthpiece 10), as a breath-activated or dosimetric nebulizer, and/or according to other modes of operation. The engagement between nebulizer interface 14 and outlet 20 may establish a substantially air tight path for the nebulized medicament to pass through between nebulizer 12 and mouthpiece 10.
It will be appreciated that the illustration of mouthpiece 10 being connected directly to the body of nebulizer 12 in
Outer housing 16 may be formed from a rigid material, and is configured to house form an outer surface of mouthpiece 10. Outer housing 16 extends from nebulizer interface 14 to subject interface 18. At a location between nebulizer interface 14 and subject interface 18, outer housing 16 defines a bend 22 in the general shape of nebulizer 12. By virtue of bend 22, the general shape of mouthpiece 10 may run in a general direction that is transverse to the general shape of mouthpiece 10 at or near nebulizer interface 14. This is so that mouthpiece 10 and/or nebulizer 12 can be conveniently grasped by the subject while receiving nebulized medicament from nebulizer 12. Outer housing 16 forms an air inlet 24 and an exhaust outlet 26. Air inlet 24 and exhaust outlet 26 are openings in outer housing 16 through which the exterior of mouthpiece 10 is communicated with the interior of mouthpiece 10.
Subject interface 18 is configured to communicate the interior of mouthpiece 10 with the airway of the subject. At subject interface 18, outer housing 16 forms an interface opening 28. At subject interface 18, the shape of outer housing 16 is configured to facilitate engagement by the mouth of the subject to facilitate inhalation of medicament by the subject through interface opening 28. For example, outer housing 16 may be shaped such that interface opening 28 has an elongated shape, with the axis of elongation corresponding to the orientation of the mouth of the subject.
As can be seen in
As can be seen in
Mouthpiece 10 includes an inlet valve 36. Inlet valve 36 is a one-way valve configured to open ambient atmosphere with medicament flow path 30 during inhalation through air inlet 24 (e.g., by virtue of the negative pressure applied by the subject), and to substantially close off communication between ambient atmosphere and medicament flow path 30 during exhalation (e.g., by virtue of a positive pressure applied by the subject during exhalation). This enables air to be drawn into medicament flow path 30 during inhalation through air inlet 24 to enhance the delivery of nebulized medicament as described above during inhalation, while preventing exhaled gas to flow back through medicament flow path 30 during exhalation to be expelled from mouthpiece 10 and/or nebulizer 12 (e.g., through air inlet 24). In some embodiments, the only places at which gas enters and/or exits medicament flow path 30 may be nebulizer interface 14, subject interface 18, and air inlet 24.
As is shown in
Air inlet 24 and/or inlet valve 36 may be disposed on and/or in mouthpiece 10 such that the flow of gas from air inlet 24 to subject interface 18 during inhalation passes across or near nebulizer interface 14. This may enhance the amount of medicament that is picked up in this flow of gas and carried from nebulizer interface 14 to subject interface 18 for inhalation by the subject.
Exhaust flow path 32 is configured to guide gas exhaled from the airway of the subject to exhaust outlet 26 so that such gas can be exhausted from mouthpiece 10. Exhaust flow path 32 is formed by an inner surface of outer housing 16 and dividing structure 34. Exhaust flow path 32 runs from subject interface 18 to exhaust outlet 26.
Exhaust outlet 26 provides an opening in outer housing 16 that facilitates communication of ambient atmosphere with exhaust flow path 32. This enables gas to flow from exhaust flow path 32 out of mouthpiece 10 through exhaust outlet 26. For example, during exhalation, the gas exhaled into subject interface 18 flows through interface opening 28, into exhaust flow path 32, and out of mouthpiece 10 through exhaust outlet 26.
Although each of medicament flow path 30 and exhaust flow path 32 communicated with interface opening 28, medicament flow path 30 and exhaust flow path 32 are formed separately from each other. In the embodiments illustrated by
During exhalation, inlet valve 36 closes, as was described above. This effectively reduces flow within medicament flow path 30 to zero or substantially zero, and forces exhaled has to pass into exhaust flow path 32 instead of medicament flow path 30. This traps some or all of the nebulized medicament within medicament flow path 30 at the beginning of exhalation in medicament flow path 30, and if additional medicament is nebulized during exhalation the newly nebulized medicament is trapped in nebulizer 12 and/or medicament flow path 30. The exhaust flow path 32, on the other hand, carries the exhaled gas of out mouthpiece 10 without bringing the exhaled gas into contact with most or all of the nebulized medicament in mouthpiece 10 and/or nebulizer 12. This isolation of the exhaled gas from medicament flow path 30 (and/or the nebulized medicament therein) may reduce medicament expelled from mouthpiece 10 during exhalation, which in turn may reduce medicament waste and/or contamination to the surrounding area by air-born medicament.
Mouthpiece 10 includes an exhaust valve 42. Exhaust valve 42 is a one-way valve configured to communicate exhaust flow path 32 with the exterior of mouthpiece 10 during exhalation through exhaust outlet 26, and to substantially close off communication between exhaust flow path 32 and the exterior of mouthpiece 10 during inhalation. This enables exhaled gas to be expelled from mouthpiece 10 through exhaust flow path 32 during exhalation, while preventing nebulized medicament gas to flow back through exhaust flow path 32 and out of mouthpiece 10 via exhaust outlet 26 during inhalation. In some embodiments, the only places at which gas enters and/or exits exhaust flow path 32 may be subject interface 18 and exhaust outlet 26.
As is shown in
Exhaust outlet 26 and/or exhaust valve 42 may be disposed at an end of exhaust flow path 32 opposite from subject interface 18 such that the flow of exhaled gas is carried away from subject interface 18 and directed away from the subject during exhalation. This may inhibit exhausted gas from being expressed from mouthpiece 10 back on the subject, which may be unpleasant for the subject.
In some embodiments, a filter port 48 is formed around exhaust outlet 26. In
By way of illustration,
At an operation 62, an output of the nebulizer through which the nebulizer outputs nebulized medicament is releasably engaged. In some embodiments, operation 62 is performed by a nebulizer interface similar to or the same as nebulizer interface 14 (shown in
At an operation 64, nebulized medicament is guided from the outlet of the nebulizer to the airway the subject through a medicament flow path during inhalation by the subject. In some embodiments, operation 64 is performed by a medicament flow path similar to or the same as medicament flow path 30 (shown in
At an operation 66, ambient atmosphere is placed in fluid communication with the medicament flow path during the inhalation by the subject. In some embodiments, operation 66 is performed by an air inlet and an inlet valve similar to or the same as air inlet 24 and inlet valve 36, respectively (as shown in
At an operation 68, fluid communication between the medicament flow path and ambient atmosphere is stopped responsive to the end of the inhalation. In some embodiments, operation 68 is performed by the inlet valve.
At an operation 70, gas exhaled from the airway of the subject during an exhalation subsequent to the inhalation is received into an exhaust flow path. In some embodiments, operation 70 is performed by an exhaust flow path similar to or the same as exhaust flow path 32 (shown in
At an operation 72, the exhaust flow path is placed in fluid communication with an exterior of the mouthpiece in response to the exhalation so that exhaled gas can be exhausted from the mouthpiece through the exhaust flow path. In some embodiments, operation 72 is performed by an exhaust outlet and exhaust valve similar to or the same as exhaust outlet 26 and exhaust valve 42, respectively, (shown in
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” or “including” does not exclude the presence of elements or steps other than those listed in a claim. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. In any device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain elements are recited in mutually different dependent claims does not indicate that these elements cannot be used in combination.
Although the description provided above provides detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the disclosure is not limited to the expressly disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present disclosure contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/055385 | 10/5/2012 | WO | 00 | 3/24/2014 |
Number | Date | Country | |
---|---|---|---|
61545315 | Oct 2011 | US |