This disclosure relates to movable barrier operators and, more specifically, to movable barrier operators and associated remote controls thereof that utilize security protocols to ensure the movable barrier operators respond only to authorized remote controls.
Various types of movable barrier operators are known. Some examples include garage door, jamb-type, jackshaft, and gate operators. These operators can move various types of movable barriers including one-piece doors, segmented doors, tilting doors, and gates. One common type of movable barrier operator system is a garage door opener that includes a track, a trolley connected to a garage door, and a head unit having a motor for driving the trolley along the track to thereby cause movement of the garage door.
Garage door openers are often sold or packaged with portable remote controls that a user can utilize to cause the garage door opener to open or close the associated garage door. Portable remote controls may alternatively be sold or packaged separately from garage door openers. The head unit and the remote controls communicate with each other via a common security protocol to ensure that only authorized remote controls can operate the head unit. The security protocol, such as the Security+2.0 security protocol utilized by some garage door openers sold by the Chamberlain Group Inc., may be programmed into a controller of the head unit and the remote controls at a manufacturing facility. The security protocol may be programmed into a head unit controller at the manufacturing facility in a number of different ways. For example, a security protocol could be programmed into the controller as a subset of the firmware/software before mounting to a printed circuit board (PCB). As another example, a controller could be programmed or otherwise loaded with the security protocol after installation on the PCB.
Manufacturers of garage door openers introduce new models with more current hardware in the marketplace from time to time. The new hardware may enable updated or completely new features, functionality and capabilities. New garage door operator hardware, for example including larger memory/storage and faster processing resources, may additionally facilitate newer security protocols that may be more secure than older security protocols. But with the expected lifetime of a garage door opener being measured in years, the features, capabilities, and security protocol of a garage door opener remain fixed to those provided at manufacture. Accordingly to obtain new features or capabilities, a new garage door opener would be purchased and installed as a replacement although an existing, older garage door opener is still functional albeit without the new features and/or capabilities.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted to facilitate a less obstructed view of these various embodiments. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.
In accordance with one aspect of the disclosure, a movable barrier operator system is provided for moving a movable barrier between first and second positions. The system includes a movable barrier operator configured to be connected to the movable barrier and a remote control configured to utilize a first security protocol to wirelessly transmit a communication to the movable barrier operator. The movable barrier operator is configured to receive information representative of a second security protocol and to eliminate a compatibility of the movable barrier operator with communications utilizing the first security protocol from the remote control. The movable barrier operator system permits the security protocol utilized by the movable barrier operator to be updated without the user having to replace a portion of or all of the hardware constituting the movable barrier operator.
For example, the movable barrier operator and the remote control (e.g. a keypad) may be updated to permit a user to control remote multi-user credentialing. Before the user may utilize the remote multi-user credentialing capability, the movable barrier operator and the keypad may need to be updated from a first security protocol (programmed at manufacture of the movable barrier operator/keypad) to a second security protocol (the current security protocol offered by the manufacturer). The update involves the movable barrier operator receiving information representative of the second security protocol, and the keypad receiving information representative of the second security protocol. The movable barrier operator eliminates the compatibility of the movable barrier operator with communications utilizing the first security protocol from the keypad.
Once the movable barrier operator and the keypad have been updated, the user can provide temporary personal identification numbers (PINs) to the movable barrier operator and guests such as by a cloud-based computing device. A newly-credentialed guest could then enter her PIN at the keypad to cause the movable barrier operator to open the movable barrier.
As one example, a homeowner is interested in subscribing to or otherwise using a delivery service for having items (e.g., purchases from an ecommerce web site or another retailer) delivered to or picked up from the homeowner's garage in an unattended manner. As another example, the homeowner may be interested in housekeeping services that enter the homeowner's property through a garage of the property when the homeowner is not present. The movable barrier operator is reconfigurable or updateable (e.g., by receiving a communication from a local or remote entity, wired or wirelessly) to enable or otherwise activate the capability of the movable barrier operator to permit the delivery service or housekeeping service to access the garage. The user can authorize the service to access the area secured by the movable barrier operator, and the cloud-based computing device can provide a temporary PIN to the movable barrier operator and an agent of the delivery or housekeeping service. When the agent of the service enters the temporary PIN at the keypad, the keypad sends a communication utilizing the second security protocol and including the temporary PIN to the garage door opener. The garage door opener operator authorizes the communication and opens the movable barrier.
The movable barrier operator system may be reconfigurable or updatable in a number of approaches. In one embodiment, the movable barrier operator and/or the remote control has the capability (e.g., hardware including communication interface, processing resources, and/or memory resources) to provide a functionality but the functionality is programmed but not enabled. This latent functionality may be activated or triggered after implementation of the movable barrier and/or remote control. For example, the movable barrier operator and/or remote control may receive a digital key from a remote cloud-based computer to unlock or enable the functionality. In another embodiment, the movable barrier operator and/or remote control has the capability (e.g., hardware including communication interface, processing resources, and/or memory resources) to provide a functionality but does not contain the programming to provide the functionality. The functionality may be added to the movable barrier operator and/or the remote control by, for example, a remote cloud-based computer sending a software or firmware update to the movable barrier operator and/or remote control.
Another advantage of the system is that the security protocol utilized by the movable barrier can be updated without the user or the manufacturer having to identify the security protocol currently used by the movable barrier operator. For example, if the movable barrier operator was configured with a first generation security protocol by the manufacturer, and had not yet been installed during the duration of a second generation security protocol, the movable barrier operator can be updated to a third generation security protocol once the movable barrier operator receives information representative of the third generation security protocol.
The remote control may include a transceiver configured to receive information representative of the second security protocol and to transmit a communication utilizing the second security protocol. In response to the movable barrier operator receiving the communication utilizing the second security protocol from the remote control, the movable barrier operator is configured to eliminate the compatibility of the movable barrier operator with communications utilizing the first security protocol from the remote control. In this manner, the movable barrier operator ensures that the movable barrier operator remains compatible with communications utilizing the first security protocol from the remote control until the remote control updates to the second security protocol. Further, the movable barrier operator and the remote control may be configured to automatically update to the second security protocol once the movable barrier operator receives the second security protocol. In other forms, the system may prompt a user for authorization or otherwise request user permission before updating the movable barrier operator and/or the remote control to the second security protocol.
In another aspect of the disclosure, a method of updating security protocol is provided for a movable barrier operator and a remote control. The remote control is configured to transmit communications utilizing a first security protocol to the movable barrier operator. The method includes receiving, at the movable barrier operator, information representative of the second security protocol. The method includes receiving, at the remote control, information representative of a second security protocol. The method further includes eliminating a compatibility of the movable barrier operator with communications utilizing the first security protocol from the remote control. This may improve the security provided by the movable barrier operator by stopping backward compatibility with communications utilizing the first security protocol from the remote control.
Also provided is a movable barrier operator having a motor configured to be connected to a movable barrier and move the movable barrier. The movable barrier operator includes communication circuitry configured to receive a communication utilizing a first security protocol from a remote control for causing operation of the motor. The communication circuitry is further configured to receive information representative of a second security protocol and to eliminate a compatibility of the communication circuitry with communications utilizing the first security protocol from the remote control. In this manner, the movable barrier operator may be more secure because the remote control no longer transmits using the first security protocol (which may be outdated) and the movable barrier operator no longer responds to communications utilizing the first security protocol from the remote control.
In accordance with another aspect of the present disclosure, a method is provided for updating a first security protocol used by a movable barrier operator and a remote control. The method includes, at a movable barrier operator, receiving information representative of a second security protocol and reconfiguring the movable barrier operator to utilize the second security protocol. The method further includes eliminating a compatibility of the movable barrier operator with communications utilizing the first security protocol from the remote control. Further, the movable barrier operator may be more secure since the movable barrier operator will no longer respond to communications utilizing the first security protocol from the remote control or a criminal's remote control that has misappropriated the identity of the remote control.
A proxy device is provided for updating the security protocol used by a movable barrier operator system including a movable barrier operator and a remote control operable to transmit communications utilizing a first security protocol to the movable barrier operator. The proxy device may be a portable computing device, for example, a smartphone or a tablet computer. The proxy device includes a communication interface configured to facilitate communicating information representative of a second security protocol to the remote control and receiving a first acknowledgment communication indicating the remote control utilizes the second security protocol. The proxy device thereby facilitates the updating of the security protocol utilized by the remote control, particularly when the remote control is located away from its associated movable barrier operator. In one form, the proxy device has a processor running an application and a user interface, such as a touch screen. The user provides a user input to the application indicating the user wants to update the remote control and the proxy device facilitates updating of the security protocol of the remote control.
The proxy device may facilitate the remote control receiving the information representative of the second security protocol in a number of ways. For example, the communication interface of the proxy device may include a short-range transceiver, such as a Bluetooth transceiver, and may transmit the second security protocol information directly to the remote control via short-range communication. The proxy device may receive the first acknowledgment communication indicating the remote control utilizes the second security protocol via the short-range transceiver. In another approach, the communication interface includes a network interface, such as a WiFi transceiver, and may send a request signal to a network entity via a network (e.g., the internet) and the network entity then transmits the information regarding the second security protocol to the remote control via the network. The proxy device may then receive, via the network, the first acknowledgment communication indicating the remote control utilizes the second security protocol.
In one form, the proxy device includes a memory storing a data structure containing information indicating the security protocol utilized by the remote control. Once the communication interface receives the first acknowledgment communication, the data structure is revised to reflect the updated security protocol utilized by the remote control. The proxy device may be used to update a plurality of remote controls together substantially in parallel, or serially one at a time, and the data structure is revised as the remote controls are updated.
In another aspect of the present disclosure, a method is provided for updating security protocols of a movable barrier operator and a remote control. The remote control is operable to transmit communications utilizing a first security protocol to the movable barrier operator. The method includes, at a communication interface of a proxy device, facilitating communication of information representative of a second security protocol to the remote control. The method further includes, at the communication interface, receiving a first acknowledgment communication indicating that the remote control utilizes the second security protocol. The method permits a user to utilize the proxy device to update the security protocol used by one or more remote controls. This may be advantageous if the remote controls are out of communication range with the movable barrier so that the user can bring the proxy device into communication range with the remote control. For example, the proxy device may be a tablet computer and an apartment, condominium, or gated community property manager may carry around the tablet computer to residents' cars to facilitate updating of the remote controls in the cars.
The proxy device may also be used to update the security protocol utilized by the movable barrier operator. The communication interface of the proxy device may communicate information representative of the second security protocol directly to the movable barrier operator by using a wired connection or a wireless such as WiFi, Bluetooth, and ZigBee. The direct connection allows the proxy device to communicate the information to the movable barrier operator if the movable barrier operator is not connected to a network such as the internet. Alternatively or in addition, the communication interface of the proxy device may communicate the information representative of the second security protocol indirectly to the movable barrier operator. The indirect connection may include one or more networks such as a cellular network and the internet.
The present disclosure also provides a method for updating security protocols of a movable barrier operator and a remote control. The remote control is configured to transmit communications utilizing a first security protocol to the movable barrier operator. The method includes transmitting information representative of a second security protocol to a movable barrier operator. The method further includes receiving information indicating that the movable barrier operator has eliminated a compatibility of the movable barrier operator with communications from the remote control utilizing the first security protocol. In this manner, a network entity such as a server computer may update the security protocol utilized by a movable barrier operator and eliminate backward compatibility of the movable barrier operator with communications utilizing the first security protocol from the remote control. In one form, the network entity and/or the movable barrier operator may store information regarding the first security protocol after eliminating the compatibility with the first security protocol in the event it is later desired to revert the movable barrier operator back to the first security protocol.
With reference to
With reference to
The movable barrier operator 16 and remote controls 42 utilize a common security protocol so that the movable barrier operator 16 can receive a communication 100 (see
The term security protocol refers to at least one of the characteristics, content (e.g. a fixed portion and/or a variable portion), and parameters of the communication 100 as well as algorithms (or a subset of instructions thereof) utilized by the remote control 42 to produce the communication 100. Similarly, the security protocol may be utilized by the movable barrier operator 16 to determine whether the communication 100 was transmitted by an authorized remote control 42. The security protocol utilized by the movable barrier operator 16 and the remote control 42 may include one or more of the following parameters of the communication 100:
Updating the security protocol of the movable barrier operator 16 and the remote controls 42 may involve updating one or more of these parameters. For example, a fixed or identifying portion 102 and/or a variable portion 104 of the communication 100 may be updated (see
The remote controls 42 may include the transmitter 22, the wall mounted switch 24, a keypad external to the garage 12, and/or remote controls associated with a vehicle as some examples. Some examples of remote controls associated with a vehicle include a remote control integrated into the dashboard or visor of a vehicle, a remote control in a rear-view mirror of a vehicle, and an infotainment or telematic system of a vehicle. The remote control 42 may also include residence-based electronic devices, such as “intelligent” personal assistants or voice assistants such as the Amazon Echo and Google Home.
Regarding
With reference to
The remote controls 42 may implement various encryption techniques, such as a rolling code technique, wherein the variable portion 104 changes with each manipulation of the remote control 42. The shared security protocol between the movable barrier operator 16 and the remote control 42 permits the movable barrier operator 16 to verify whether the communication 100 and its components were produced by an authorized remote control 42 using the shared security protocol despite the changing of the variable portion 104 of the communication 100 with each manipulation of the remote control 42.
The communication 100 may propagate or be communicated in a single direction, such as from the remote control 42 to the movable barrier operator 16. In another form, the communication 100 is bidirectional and has two components: a first signal sent from the remote control 42 to the movable barrier operator 16 and a second signal sent from the movable barrier operator 16 to the remote control 42. Two-way communications may increase the security of the communication 100. Two-way communication may also be used to provide features like door status or an indication that a delivery person opened a barrier associated with the movable barrier operator 16.
With reference to
The data structure 120 may reside in multiple instances (locations or entities) including the movable barrier operator 16, proxy device 44, and network entity 50. The information stored in the data structure 120 may be synchronized across the instances. Upon occurrence of a change to information in the data structure 120, the information change is propagated throughout the system 10. This ensures consistency and up-to-date information at each of the instances.
For the data structure 120 shown in
In another form, there may be two or three movable barrier operators 16 to open two or three garage doors with each movable barrier operator 16 having its own associated remote controls 42. The data structure 120 may include information organized hierarchically according to door or movable barrier operator regarding all of the movable barrier operators 16 and their associated remote controls 42 and security protocols. In another form, there may be a separate data structure for each movable barrier operator 16 and its remote controls 42. In some instances, the data structure 120 may be configured as linked tables or a relational database.
In one form, the moveable barrier operator 16 includes a memory 150 (see
With reference to
With reference to
In response to the transceiver 204 of the remote control 42 receiving the information regarding the second security protocol, the remote control processor 206 may reconfigure the remote control 42 to utilize the second security protocol. As an example, reconfiguration may involve rewriting or updating information stored in the memory 202 and/or processor 206 regarding the first security protocol, such as values or algorithms. The information regarding the first security protocol may be stored in the memory 202 in the event it is desired to revert back to the first security protocol.
Once the remote control 42 has been updated to utilize the second security protocol, the processor 206 operates the transceiver 204 to provide an acknowledgement communication to the moveable barrier operator 16 indicating that the remote control 42 has updated to the second security protocol. The acknowledgement communication may be in the form of a separate communication produced in response to the processor 206 completing the updating of the security protocol. In another approach, the acknowledgment communication may be a command signal transmitted by the transceiver 204 utilizing the second security protocol instead of the first security protocol from which the moveable barrier operator 16 is able to infer that the remote control 42 has been updated. The moveable barrier operator 16 recognizes the communication 100 transmitted using the second security protocol as confirmation that the remote control 42 has been updated to the second security protocol.
The processor 158 of the movable barrier operator 16 may then update the data structure 120 each time the moveable barrier operator 16 receives an acknowledgement from one of the remote controls 42 indicating that the remote control 42 has updated to the second security protocol. As shown in
For example, the movable barrier operator 16 may eliminate its compatibility for communications 100 utilizing the first security protocol by adding, deleting, and/or overwriting information in the memory 150 and/or processor 158 regarding the first security protocol such as values and/or programs. In another form, the processor 158 may facilitate storing the information regarding the first security protocol in the memory 150 so as to permit the movable barrier operator 16 to revert back to the first security protocol if desired at a later time.
The movable barrier operator 16 may eliminate its compatibility with communications 100 utilizing the first security protocol after all of the remote controls 42 have provided an acknowledgment that the remote controls 42 now utilize the second security protocol. In another approach, the movable barrier operator 16 eliminates its compatibility with the communications 100 from each remote control 42 in response to the movable barrier operator 16 receiving an acknowledgment that the remote control 42 utilizes the second security protocol. If the movable barrier eliminates its compatibility with one remote control 42 at a time, the movable barrier operator 16 may move the garage door 14 in response to receiving a communication 100 from a first remote control 42 that has been updated to the second security protocol and may move the garage door 14 in response to receiving a communication 100 from a second remote control 42 that has not yet completed its update to the second security protocol. For example, the first remote control 42 may be an updatable keypad outside of the garage door 14 and the second remote control 42 may be non-updatable transmitter in the dashboard or mirror of a vehicle. The movable barrier operator 16 may preserve the operability of the movable barrier operator 16 with the non-updatable transmitter utilizing the first security protocol for the remaining lifetime of the non-updatable transmitter while no longer responding to communications from the updatable keypad according to the first security protocol.
With reference to
The communication interface 255 may include a short-range transceiver 260, such as a transceiver utilizing Bluetooth, Bluetooth Low Energy, infrared, Near Field Communication (NFC), ZigBee, and/or WiFi approaches. The communication interface 255 may also include a network interface 262 configured for interfacing with the network 52. The network interface 262 may include, for example, a cellular phone transceiver and antenna configured to communicate using approaches such as 3G, 4G, LTE, LTE-A and 5G.
In one approach, the proxy device 44 facilitates updating of the remote controls 42. For example, the data structure 120 may be stored in the memory 252 of the proxy device 44. The proxy device 44 may receive information regarding the second security protocol from the network entity 50 via the network 52. The proxy device 44 may provide information to the remote controls 42 for updating the remote controls 42 to the second security protocol. The remote controls 42 may then provide an acknowledgement to the proxy device 44 indicating that the remote controls 42 have been updated to the second security protocol. Once the proxy device 44 receives update acknowledgements from the remote controls 42, the proxy device 44 may provide acknowledgement to the moveable barrier operator 16 and/or the network entity 50 indicating that the remote controls 42 have been updated to the second security protocol.
The proxy device 44 may also facilitate updating of the movable barrier operator 16. In one embodiment, the proxy device 44 sends information regarding the second security protocol directly to the moveable barrier operator 16. The proxy device 44 may thereby provide the movable barrier operator 16 with information regarding the second security protocol even if the movable barrier operator 16 is not connected to the network 52. In another embodiment, the moveable barrier operator 16 may be connected to the network 52 and the proxy device 44 provides information regarding the second security protocol indirectly to the movable barrier operator 16 via the network 52. In one form, the proxy device 44 receives an update acknowledgement from the movable barrier operator 16 and provides an acknowledgment to the network entity 50 indicating that the movable barrier operator 16 has been updated to the second security protocol.
If the data structure 120 is stored in the memory 252 of the proxy device 44, the processor 250 may cause the data structure 120 to be updated to indicate the movable barrier operator 16 and remote controls 42 utilize the second security protocol. It will be appreciated that the tracking of the security protocol utilized by the movable barrier operator 16 and remote controls 42 may be performed using different techniques. For example, the proxy device 44 may track the security protocol utilized by the movable barrier operator 16 and the movable barrier operator 16 may track the security protocol utilized by the remote controls 42. The movable barrier operator 16 and the proxy device 44 may each provide security protocol information to the network entity 50.
With reference to
With reference to
Once the movable barrier operator 16 has committed 302, the moveable barrier operator 16 transmits 304 an update package 305 to the remote control 42. The update package 305 may be sent by push or pull techniques. For example, the movable barrier operator 16 may push the update package 305 to the remote control 42 when the remote control 42 is within range of the movable barrier operator 16. As example of a pull approach, when a user manipulates the remote control 42 to cause the moveable barrier operator 16 to open the garage door 14, the remote control 42 could initiate a bidirectional communication to check whether there is a security protocol update for the remote control 42. The bidirectional communication may have different properties than the communication 100, such as by utilizing WiFi or Bluetooth whereas the communication 100 utilizes a radio frequency at 315 MHz for example. If the movable barrier operator 16 indicates there is a security protocol update available, the remote control 42 obtains the update package 305 from the movable barrier operator 16.
The remote control 42 could obtain the update package 305 in other ways. For example, the movable barrier operator 16 could provide the remote control 42 with an update token which the remote control 42 uses to obtain the update package 305 from a device external to the remote control 42, e.g., the network entity 50 via the proxy device 44.
Once the remote control 42 receives the update package 305, the remote control 42 may commit 306 to updating the security protocol from the first security protocol to the second security protocol. The remote control 42 may commit 306 to updating the security protocol once the remote control 42 has been within range of the movable barrier operator 16 for a predetermined period of time. The remote control 42 may alternatively commit to the update package 305 based on at least one determination that the remote control 42: has been stationary (e.g., as sensed by an accelerometer or gyroscope); and proximate to the movable barrier operator 16 (e.g., as determined based on received signal strength indication (RSSI) or the like). This may allow the remote control 42 to receive all of the information needed for the update before the remote control 42 starts the update.
The remote control 42 updates to the second security protocol and transmits 308 an acknowledgement communication 309 to the moveable barrier operator 16. The transmitter 42 may transmit 308 the acknowledgment communication 309 once the remote control 42 has completed the update. In another approach, the remote control 42 may transmit 308 the acknowledgment communication 309 before or during the updating process.
The movable barrier operator 16 receives the acknowledgment communication 309, and in response to the receiving the acknowledgment communication 309, may perform at least one of updating the communication circuitry 152 to the second security protocol (if not already completed at committing operation 302), and eliminating the compatibility of the communication circuitry 152 with communications 100 utilizing the first security protocol from the remote control 42. The moveable barrier operator 16 transmits 310 a report 312 to the network entity 50 indicating that the moveable barrier operator 16 and the remote control 42 have been updated to the second security protocol. Further, the moveable barrier operator 16 may update the data structure 120 stored in the memory 150 to reflect that the remote control 42 has been updated to the second security protocol.
Various factors may be taken into account when configuring the transmissions 301, 304 of the packages 301A, 305 as well as activation thereof. Depending on the update to be performed, the movable barrier operator 16 and/or the remote control 42 could select one or more communication paths to achieve a suitable bandwidth/throughput for the entirety or part of the update package. One or more sensors, such as an accelerometer or gyroscope at the remote control 42 could detect movement which would cause delay, pause, or prevention of the update procedure.
With reference to
Initially, the network entity 50 transmits 402 an update package 404 to the movable barrier operator 16. The moveable barrier operator 14 receives the update package 404 and commits 406 to updating the security protocol of the moveable barrier operator 16. The moveable barrier operator 16 transmits 408 an update package 410 to the remote control 42A. The moveable barrier operator 16 also transmits 412 the update package 410 to the remote control 42B. In another form, the movable barrier operator 16 may transmit the update package 410 to the remote control 42A and the remote control 42A acts as a proxy device and provides the update package 410 to the other remote control 42B.
The remote control 42A commits 414 to the update and transmits 416 an acknowledgment communication 418 to the moveable barrier operator 16. The remote control 42B commits 420 and transmits 422 an acknowledgment communication 418 to the moveable barrier operator 16. The movable barrier operator 16 updates the communication circuitry 152 to utilize the second security protocol and eliminates the compatibility of the communication circuitry 152 with communications 100 utilizing the first security protocol from the remote controls 42A, 42B.
The moveable barrier operator 16 transmits 426 a report 428 to the network entity 50 indicating that the moveable barrier operator 16 and the remote controls 42A, 42B have been updated from the first security protocol to the second security protocol. The moveable barrier operator 16 may update the data structure 120 (or otherwise cause the network entity 50 to update the data structure 120 according to the report 428) to reflect that the remote controls 42A, 42B have both been updated to the second security protocol.
With reference to
To preserve the ability of the remote control 42B to operate the moveable barrier operator 16, the moveable barrier operator 16 may not eliminate the capability of the moveable barrier operator 16 to operate in response to control signals received using the first security protocol if the control signals are sent from the remote control 42B. In other words, the moveable barrier operator 16 may preserve the ability of the moveable barrier operator 16 to operate with the communications 100 utilizing the first security protocol from the remote control 42B. For example, the communication circuitry 152 may keep the first security protocol in the memory 150 to provide backwards compatibility with the remote control 42B until the remote control 42B completes its update to the second security protocol. Once the vehicle returns to the garage 12, the remote control 42B may continue receiving the information regarding the second security protocol needed to complete the update of the remote control 42B to the second security protocol.
In one approach, the movable barrier operator 16 may not eliminate compatibility of the movable barrier operator 16 with communications 100 from any of the remote controls 42 until all of the remote controls 42A, 42B have acknowledged they have received and updated to the second security protocol.
In one approach, the network entity 50 may send a signal to the proxy device 44 indicating that not all of the remote controls 42 have been updated. The proxy device 44 may then display a prompt to the user and ask whether to eliminate compatibility of the moveable barrier operator 16 with respect to communications 100 utilizing the first security protocol. This provides the opportunity for a user, such as a facility manager, to decide whether to convert the barrier operator 16 to utilize the secondary security protocol. Furthermore when the data structure 120 is stored on or accessible via the proxy device 44 in a human-readable format (e.g., a graphical user interface), the facility manager may contact the persons associated with the non-updated remote controls 42 and get the remote controls 42 updated. The network entity 50 may alternatively send an email to a user providing an indication that not all of the remote controls 42 have been updated.
The movable barrier operator 16 may eliminate compatibility of the movable barrier operator 16 with communications 100 utilizing the first security protocol after a predetermined time period. For example, the movable barrier operator 16 may set a time period of a month after committing 506 to the update. If the movable barrier operator 16 controlled the entrance to an apartment complex, this time period would give residents time to update their remote controls 42 as the users enter and exit the complex.
The movable barrier operator 16 may eliminate the compatibility of the movable barrier operator 16 with communications 100 utilizing the first security protocol after a critical mass or predetermined quantity of remote controls 42 have acknowledged their updating to the second security protocol. The critical mass of remote controls 42 may be, for example, fifty percent, sixty percent, seventy percent, eighty percent, or ninety percent of the remote controls 42.
With respect to
The network entity 50 transmits 616 a data structure package 614 containing information from the data structure 120. The moveable barrier operator 16 reviews the information contained in the data structure package 616 and transmits 618 an update package 620 based at least in part on the initiate update package 604 to the remote control 42. The remote control 42 commits 621 to the update and updates the security protocol utilized by the transceiver 204. The remote control 42 transmits 622 an acknowledgement 624 to the moveable barrier operator 16. With the remote control 42 updated, the movable barrier operator 16 updates the communication circuitry 152 to utilize the second security protocol. The moveable barrier operator 16 transmits 626 a report 628 to the network entity 50 via the network 52. The report 628 indicates that the moveable barrier operator 16 and the remote control 42 have been updated from the first to the second security protocol.
With reference to
It will be appreciated that movable barrier operator 16, one or more remote controls 42, one or more proxy device 44, and one or more network entities 50 may each include one or more hardware processors configured by machine-readable instructions. One or more non-transitory computer readable mediums may be provided that include instructions that are used by the processors to perform the methods discussed above.
Although method steps may be presented and described herein in a sequential fashion, one or more of the steps shown and described may be omitted, repeated, performed concurrently, and/or performed in a different order than the order shown in the figures and/or described herein. Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described examples without departing from the scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
This application is a U.S. national phase application of PCT/US2019/017005, filed Feb. 7, 2019, designating the United States, which claims the benefit of U.S. Provisional Patent App. No. 62/629,442, filed Feb. 12, 2018, which are all hereby incorporated by reference herein in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/017005 | 2/7/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/157149 | 8/15/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4360807 | Zettergren | Nov 1982 | A |
4464651 | Duhame | Aug 1984 | A |
5555502 | Opel | Sep 1996 | A |
5565843 | Meyvis | Oct 1996 | A |
5899956 | Chan | May 1999 | A |
6025785 | Farris | Feb 2000 | A |
6158655 | Devries, Jr. | Dec 2000 | A |
6166698 | Turnbull | Dec 2000 | A |
6167137 | Marino | Dec 2000 | A |
6239569 | Fitzgibbon | May 2001 | B1 |
6271765 | King | Aug 2001 | B1 |
6278249 | Fitzgibbon | Aug 2001 | B1 |
6308083 | King | Oct 2001 | B2 |
6326754 | Mullet | Dec 2001 | B1 |
6400956 | Richton | Jun 2002 | B1 |
6411887 | Martens | Jun 2002 | B1 |
6476732 | Stephan | Nov 2002 | B1 |
6484784 | Weik, III | Nov 2002 | B1 |
6487495 | Gale | Nov 2002 | B1 |
6526335 | Treyz | Feb 2003 | B1 |
6559775 | King | May 2003 | B1 |
6615132 | Nagasaka | Sep 2003 | B1 |
6624605 | Powder | Sep 2003 | B1 |
6690268 | Schofield | Feb 2004 | B2 |
6707421 | Drury | Mar 2004 | B1 |
6708086 | Richard | Mar 2004 | B2 |
6711474 | Treyz | Mar 2004 | B1 |
6791472 | Hoffberg | Sep 2004 | B1 |
6812942 | Ribak | Nov 2004 | B2 |
6856820 | Kolls | Feb 2005 | B1 |
6940492 | Maritzen | Sep 2005 | B2 |
6978206 | Pu | Dec 2005 | B1 |
6988026 | Breed | Jan 2006 | B2 |
7038409 | Mullet | May 2006 | B1 |
7088265 | Tsui | Aug 2006 | B2 |
7103460 | Breed | Sep 2006 | B1 |
7113090 | Saylor | Sep 2006 | B1 |
7158881 | McCarthy | Jan 2007 | B2 |
7205892 | Luebke | Apr 2007 | B2 |
7205908 | Tsui | Apr 2007 | B2 |
7224324 | Quist | May 2007 | B2 |
7257426 | Witkowski | Aug 2007 | B1 |
7272497 | Koshiji | Sep 2007 | B2 |
7298289 | Hoffberg | Nov 2007 | B1 |
7315143 | Mullet | Jan 2008 | B2 |
7386318 | Moon | Jun 2008 | B2 |
7415243 | Yuhara | Aug 2008 | B2 |
7440845 | Laverick | Oct 2008 | B1 |
7468676 | Styers | Dec 2008 | B2 |
7493726 | Fitzgibbon | Feb 2009 | B2 |
7532965 | Robillard | May 2009 | B2 |
7602283 | John | Oct 2009 | B2 |
7710284 | Dzurko | May 2010 | B2 |
7869582 | Styers | Jan 2011 | B2 |
7999721 | Orr | Aug 2011 | B2 |
8040217 | Fitzgibbon | Oct 2011 | B2 |
8218739 | Styers | Jul 2012 | B2 |
8410930 | Karasek | Apr 2013 | B2 |
8525723 | Orr | Sep 2013 | B2 |
8587404 | Laird | Nov 2013 | B2 |
8611919 | Barnes, Jr. | Dec 2013 | B2 |
9141099 | Cate | Sep 2015 | B2 |
9756233 | Lee | Sep 2017 | B2 |
9986435 | Potkonjak | May 2018 | B2 |
10060175 | Lickfelt | Aug 2018 | B1 |
10127384 | Shah | Nov 2018 | B2 |
10184287 | Tehranchi | Jan 2019 | B2 |
10358859 | Lickfelt | Jul 2019 | B2 |
10837217 | Cate | Nov 2020 | B2 |
10846956 | Cate | Nov 2020 | B2 |
10873828 | Lau | Dec 2020 | B2 |
10907398 | Cate | Feb 2021 | B2 |
11210875 | Cate | Dec 2021 | B2 |
11225823 | Cate | Jan 2022 | B2 |
20020055924 | Liming | May 2002 | A1 |
20020085043 | Ribak | Jul 2002 | A1 |
20020147006 | Coon | Oct 2002 | A1 |
20020173889 | Odinak | Nov 2002 | A1 |
20020193946 | Turnbull | Dec 2002 | A1 |
20030006888 | Burchette | Jan 2003 | A1 |
20030007261 | Hutzel | Jan 2003 | A1 |
20030055557 | Dutta | Mar 2003 | A1 |
20030071590 | Roman | Apr 2003 | A1 |
20030140107 | Rezvani | Jul 2003 | A1 |
20030182026 | Awada | Sep 2003 | A1 |
20030197594 | Olson | Oct 2003 | A1 |
20030197595 | Olson | Oct 2003 | A1 |
20040034455 | Simonds | Feb 2004 | A1 |
20040093154 | Simonds | May 2004 | A1 |
20040110472 | Witkowski | Jun 2004 | A1 |
20040158371 | Iggulden | Aug 2004 | A1 |
20040212498 | Peterson | Oct 2004 | A1 |
20040246607 | Watson | Dec 2004 | A1 |
20050012631 | Gregori | Jan 2005 | A1 |
20050024230 | Chuey | Feb 2005 | A1 |
20050176400 | Mullet | Aug 2005 | A1 |
20050195066 | Vandrunen | Sep 2005 | A1 |
20060005018 | Alculumbre | Jan 2006 | A1 |
20060041373 | Rowe | Feb 2006 | A1 |
20060050018 | Hutzel | Mar 2006 | A1 |
20060158339 | Brundula | Jul 2006 | A1 |
20070058811 | Fitzgibbon | Mar 2007 | A1 |
20070146118 | Rodriguez | Jun 2007 | A1 |
20070273472 | Gregori | Nov 2007 | A1 |
20080132220 | Fitzgibbon | Jun 2008 | A1 |
20110010543 | Schmidt | Jan 2011 | A1 |
20110035604 | Habraken | Feb 2011 | A1 |
20130060357 | Li | Mar 2013 | A1 |
20130063243 | Witkowski | Mar 2013 | A1 |
20130117078 | Weik, III | May 2013 | A1 |
20130147600 | Murray | Jun 2013 | A1 |
20130179238 | Warner, IV | Jul 2013 | A1 |
20130201286 | Schockmel | Aug 2013 | A1 |
20140129606 | Cate | May 2014 | A1 |
20140237564 | Dudziak | Aug 2014 | A1 |
20150137941 | Bauer | May 2015 | A1 |
20150227284 | Tehranchi | Aug 2015 | A1 |
20150228135 | Tehranchi | Aug 2015 | A1 |
20160010382 | Cate | Jan 2016 | A1 |
20160078264 | Armstrong | Mar 2016 | A1 |
20160194912 | Fitzgibbon | Jul 2016 | A1 |
20160196706 | Tehranchi | Jul 2016 | A1 |
20160371910 | Baumgarte | Dec 2016 | A1 |
20160379425 | Tehranchi | Dec 2016 | A1 |
20170103599 | Siegesmund | Apr 2017 | A1 |
20170241189 | Fitzgibbon | Aug 2017 | A1 |
20180167948 | Egner | Jun 2018 | A1 |
20180245395 | Huggins | Aug 2018 | A1 |
20180350170 | Wang | Dec 2018 | A1 |
20180375965 | Fitzgibbon | Dec 2018 | A1 |
20190010382 | Kuznetsov | Jan 2019 | A1 |
20190085615 | Cate | Mar 2019 | A1 |
20190249481 | Cate | Aug 2019 | A1 |
20190392691 | Cheng | Dec 2019 | A1 |
20200240198 | Cate | Jul 2020 | A1 |
20200242862 | Cate | Jul 2020 | A1 |
20200336906 | Belhareth | Oct 2020 | A1 |
20210019964 | Cate | Jan 2021 | A1 |
20210123288 | Cate | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
106951253 | Jul 2017 | CN |
1996035196 | Nov 1996 | WO |
2019157149 | Aug 2019 | WO |
Entry |
---|
Integrating GPS data within embedded Internet GIS; Arunas Stockus, Alain Bouju, Frédéric Bertrand, Patrice Boursier; “GIS '99: Proceedings of the 7th ACM international symposium on Advances in geographic information systems, pp. 134-139; Date of Publication: Nov. 1999”; https://doi.org/10.1145/320134.320168. |
Intelligent pervasive middleware for context-based and localized telematics services; Chatschik Bisdikian, Isaac Boamah, Paul Castro, Archan Misra, Jim Rubas, Nicolas Villoutreix, Danny Yeh, Vladimir Rasin, Henry Huang, Craig Simonds; “WMC '02: Proceedings of the 2nd international workshop on Mobile commerce, pp. 15-24; Date of Publication: Sep. 2002”; https://doi.org/10.1145/570705.570710. |
Interfaces, autonomy, & interactions in automobile driving; Erwin R. Boer, Michael A. Goodrich; “CHI EA '04: CHI '04 Extended Abstracts on Human Factors in Computing Systems, pp. 1578-1579; Date of Publication: Apr. 2004”; https://doi.org/10.1145/985921.986153. |
Next century challenges: Nexus—an open global infrastructure for spatial-aware applications; Fritz Hohl, Uwe Kubach, Alexander Leonhardi, Kurt Rothermel, Markus Schwehm; “MobiCom '99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pp. 249-255 Date of Publication: Aug. 1999”; https://doi.org/10.1145/313451.313549. |
Towards scalable location-aware services: requirements and research issues; Mohamed F. Mokbel, Walid G. Aref, Susanne E. Hambrusch, Sunil Prabhakar, “GIS '03: Proceedings of the 11th ACM international symposium on Advances in geographic information systems, pp. 110-117; Date of Publication: Nov. 2003”; https://doi.org/10.1145/956676.956691. |
USPTO; U.S. Appl. No. 17/064,255; Notice of Allowance dated Aug. 11, 2021; (pp. 1-31). |
USPTO; U.S. Appl. No. 17/064,255; Notice of Allowance dated Aug. 11, 2021; (pp. 1-7). |
USPTO; U.S. Appl. No. 17/082,691; Notice of Allowance dated Sep. 2, 2021; (pp. 1-7). |
USPTO; U.S. Appl. No. 17/064,255; Notice of Allowance and Fees Due (PTOL-85) dated Oct. 13, 2021; (pp. 1-2). |
Austalian Patent Application No. 2019217958; Examination Report No. 1; dated Jan. 17, 2023, 2 pages. |
USPTO; U.S. Appl. No. 17/064,255; Notice of Allowance and Fees Due (PTOL-85) dated Aug. 11, 2021; (31 pages). |
USPTO; U.S. Appl. No. 17/082,691; Notice of Allowance and Fees Due (PTOL-85) dated Nov. 22, 2021; (pp. 1-2). |
Canadian Patent Application No. 2,693,580; Office Action dated Mar. 24, 2015; 4 pages. |
PCT Patent Application No. PCT/US2019/017005; International Search Report and Written Opinion dated May 19, 2019. |
The Genie Company, Instructions for Closed Confirm™ Remote Installation and Operation, publicly available before Jan. 24, 2019, 1 page. |
UL Standard for Safety for Door, Drapery, Gate, Louver, and Window Operators and Systems, UL 325 Fifth Edition, Dated Jun. 7, 2002; pp. 1-186. |
USPTO; U.S. Appl. No. 16/257,045; Notice of Allowance dated Jul. 9, 2020; (pp. 1-12). |
USPTO; U.S. Appl. No. 16/272,728; Notice of Allowance dated Sep. 28, 2020; (pp. 1-11). |
USPTO; U.S. Appl. No. 16/272,728; Office Action dated Jan. 15, 2020; (pp. 1-24). |
USPTO; U.S. Appl. No. 16/272,728; Office Action dated May 29, 2020, (pp. 1-30). |
USPTO; U.S. Appl. No. 16/596,330; Notice of Allowance dated Jul. 8, 2020; (pp. 1-12). |
Wayback Machine archive of https://geniecompany.com/garage-door-openers/accessories/closed-confirm-remote.aspx, website publicly available as of Oct. 28, 2016, 3 pages. |
Canadian Patent Application No. 3,069,208; Office Action dated Jan. 17, 2023; 3 pages. |
Number | Date | Country | |
---|---|---|---|
20200402337 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62629442 | Feb 2018 | US |