This invention relates generally to movable barrier operator systems.
Movable barrier operator systems of various kinds are known in the art. In general, such systems serve to effect selective movement of a movable barrier (including but not limited to garage doors of various kinds, rolling shutters, and other horizontally or vertically sliding, moving, or pivoting doors, gates, arms, and the like) between at least a first position and a second position (such as between an opened and a closed position). Many such systems include at least one and frequently a plurality of movable barrier operator system operational components. Such components serve in general to instigate active operation of the system in general and often (but not always) more specifically the active operation of the movable barrier itself. Examples of such operational components include but are not limited to movable barrier operators and movable barrier operator remote control devices (including wired and wireless remote control devices and portable and stationary remote control devices).
The operational strategies, component configuration and deployment, and feature sets of such systems continues to grow in complexity. At the same time, however, many users are unable or unwilling to make effective use of a challenging user interface. As a result, many modern movable barrier operator systems that support a variety of functions and operational states nevertheless offer only a very limited user interface. For example, only a very few buttons or knobs may be presented in a given prior art system. While such design structures do, in at least some sense, often succeed in maintaining potential user cognitive loading at or below some desired level, these same user interface conditions also potentially unduly constrain the breadth and/or depth of system functionality and capability. This, in turn, can ultimately lead to reduced user satisfaction.
The above needs are at least partially met through provision of the movable barrier operator system display method and apparatus described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the scale as is suggested for some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will also be understood that the terms and expressions used herein have the ordinary meaning as is usually accorded to such terms and expressions by those skilled in the corresponding respective areas of inquiry and study except where other specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments, a movable barrier operator system operational component, such as a movable barrier operator and/or a movable barrier operator remote control device, further comprises an integral display. In some embodiments this display comprises at least one of an alphanumeric display and a graphics display. By at least one approach the movable barrier operator system operational component comprises a movable barrier operator system wall-mounted user-input interface and the display comprises at least a numeric, and preferably at least an alphanumeric, display.
In some embodiments the display can itself comprise a user-input interface (as when the display comprises, in whole or in part, a touch screen display surface). In addition, or in lieu thereof, such a display can be used in close conjunction with one or more user-assertable control surfaces (such as but not limited to push buttons and other switches). Such user-assertable control surfaces can comprise a fixed-function user-assertable control surface or a programmable function user-assertable control surface. It is also possible to configure such an operational component to comprise an audio interface to facilitate, for example, a speech recognition-based interface to thereby receive and process spoken commands or inquiries from a user.
So configured, an operational component having some user input and/or active system control capability and/or responsibility can be further imbued with an ability to provide varying visual content to a user. This, in turn, can facilitate ease of installation or usage, and/or the deployment of a greater number of functional options or capabilities than a present system would typically usefully offer.
Referring now to the drawings, and in particular to
The movable barrier operator system operational component 11 comprises a component that provides operational input to such a movable barrier operator system and can include, but is not limited to, a movable barrier operator or a movable barrier operator remote control device. This includes both portable and stationary devices as well as both wired and wireless devices. Wired devices that physically couple to the movable barrier operator system can utilize any appropriate link 13 including but not limited to optical signal paths and electrical signal paths (such as 2-wire conductor bundles as are well known in the art) that support, for example, a 2-wire conductor serial data bus (again as are well known in the art). Wireless devices can utilize any appropriate wireless link 13 including but not limited to infrared-based wireless platforms, radio frequency-based wireless platforms, optical signal-based wireless platforms, and/or sound-based (such as ultrasonic-based) wireless platforms as are generally well understood in the art.
In these embodiments the movable barrier operator system operational component 11 further comprises a display 12. In a preferred approach this display 12 comprises at least one of an alphanumeric display or a graphics display (though in some settings, as when the movable barrier operator system operational component 11 comprises a movable barrier operator system wall-mounted user-input interface, the display 12 can comprise at least a numeric display as versus an alphanumeric display). Also in a preferred approach the movable barrier operator system operational component 11 comprises a housing 14 that houses at least a substantial part of the movable barrier operator system operational component 11 and that at least partially supports the display 12. For example, the display 12 can be substantially retained within the housing 14 or can be partially or fully disposed and retained on an exterior surface of the housing 14.
Such a display 12 can comprise a monochromatic display or a multi-color display (including but not limited to a full-color display) as may best suit the needs of a given application. Any presently known or hereafter-developed display technology can also likely be used as commensurate with the needs of a given setting, including but not limited to scanning-based platforms (such as cathode ray tube-based displays) and pixelated platforms (such as light emitting diode-based displays and liquid crystal displays).
In some embodiments the display 12 may comprise a display-only element. In a preferred approach, however, the display 12 will comprise, at least in part, a touch screen display as is known in the art.
As already noted above, in many instances the movable barrier operator system operational component 11 will comprise a movable barrier operator system remote control device that couples to a movable barrier operator. With reference to
It would also be possible to configure a system having one or more movable barrier operators with a plurality of movable barrier operator system operational components 11, including but not limited to a plurality of remote control devices. For example, a given system might include two wall-mounted remote control devices and three portable wireless remote control devices. Pursuant to these teachings at least one of these remote control devices will comprise an integral display 12. In many application settings, however, it will likely be preferred to include such a display with a larger subset and, in some settings, with each such remote control device.
Substantial advantages can be realized through provision of such a display. It now becomes possible to provide a greater depth of information regarding presently selected or selectable operating features and/or operating parameters and status. This, in turn, makes it considerably easier to provide a richer suite of operating options and features. By providing a display comprising, at least in part, a touch screen display, these benefits are likely leveraged further because user input can be elicited when required (or useful) in a manner that can be far more intuitive and/or guided than is presently attainable with typical standard practices in this field of endeavor.
Pursuant to some embodiments, and referring now to
When providing a plurality of such control surfaces, and referring now to
It would also be possible to configure one or more such control surfaces as a programmable function user-assertable control surface as versus a fixed-function user-assertable control surface. So configured, the purpose and/or functionality of a given control surface can vary during different modes of operation for a given movable barrier operator system operational component 11. To illustrate, and with continued reference to
It will therefore be appreciated by those skilled in the art that such a display can significantly impact the flexibility and usability of a given movable barrier operator system operational component 11 and particularly so when the display itself comprises a user entry interface or works in conjunction with other user entry interfaces to facilitate the use and/or programmed alteration of use of such user entry interfaces.
In the illustrative examples provided above, a user interacts with the movable barrier operator system operational component 11 via physical contact with the component. It would also be possible to use voice-activated control strategies, either alone or in conjunction with physical-contact based approaches. For example, and referring now to
As one example, the display can provide options that can be audibly selected. To illustrate, the display could show the following:
A user could then audibilize the word “TWO” in order to select the time functionality depicted. In such a case, acceptable speech input is constrained to specific predetermined options. Such an approach typically lends itself well to facilitating speaker independence.
As another example, a user could verbalize the words “TWO POINT THREE” and the display could display the recognized result. By displaying “2.3” the user would receive visual confirmation that the input had been successfully recognized. If “2.8” were displayed instead, the user would quickly understand that the input had been mis-interpreted.
Such examples are intended to be illustrative only and without any intent to comprise an exhaustive selection. Those skilled in the art will recognize that a wide variety of useful interactions between a display and a speech recognition capability in a movable barrier operator system operational component 11 can be envisioned and realized by employing these teachings.
In the various embodiments set forth above, the movable barrier operator system operational component 11 had a single display 12. Depending upon the needs of a given application, however, it might be useful or preferred to provide two or more such displays. For example, as illustrated in
In the embodiments described with respect to
If desired, one or more of these display options can be used in conjunction with other output mechanisms as well. For example, an audiblized speech mechanism can be provided to facilitate the provision of audibly articulated informational content to a nearby user. (Synthesized and pre-recorded speech-delivery techniques are known in the art. In addition, further details regarding supporting embodiments and use of speech-delivery mechanisms in a movable barrier operator system are set forth in U.S. patent application Ser. No. 10/843,237, entitled MOVABLE BARRIER CONTROL SYSTEM COMPONENT WITH AUDIBLE SPEECH OUTPUT APPARATUS AND METHOD filed on even date herewith, May 11, 2004, the contents of which are fully incorporated herein by this reference.) When providing such facilities, it will likely often be useful to provide a selection mechanism to permit a user to select which information output approaches to use (alone or in combination with one another) for given corresponding functions and/or periods of time. These various embodiments of a display-bearing movable barrier operator system operational component (and other such enabling platforms as may be selected for use in a given setting) can be used in a variety of ways to support helpful interaction with a system user. For example, and referring now to
The received information can comprise any of a wide variety of content including but not limited to:
information from or relating to a movable barrier operator;
information from or relating to obstacle detectors;—information from or relating to a remote control device;
information relating to potential service personal;
information to complement other provided information including, for example, contact information or other commercial messages.
Examples of such information include, but is not limited to:
a fault within the movable barrier operator system;
a decision-making-basis for an automated action;
system status;
status regarding a movable barrier operator system component;
service information;
scheduled maintenance information;
contact information;
commercial content;
information regarding an automatically expiring state; and/or
movable barrier operator system help.
Examples of movable barrier operator system help include, but is not limited to:
installation instructions;
set-up instructions;
usage instructions;
configuration information;
maintenance information;
safe-operation information.
As indicated above, such information can be received in a variety of ways including via a wireless communication path and a physical communication path.
Referring now to
prompting an installer for information during installation of a movable barrier operator system;
providing an installer with interactive step-by-step instructions during installation or reconfiguration of a movable barrier operator;
confirmed the automated effectation of specific actions during installation of a movable barrier operator;
providing diagnostic information regarding failure or possible-failure conditions and status;
providing fault status information regarding a component or group of components;
providing information regarding a logical condition, state, or sensed condition as prompted a specific action or in-action by the movable barrier operator system;
providing historical information regarding operation, state, faults, detected events or conditions, diagnostic conclusions, and the like;
providing service information regarding, for example, when service is needed (either at present or in the future), servicing instructions, and servicing assistance contact information (such as service company name, service company contact, an Internet address, a street address, a telephone number, and the like for service personnel);
providing information regarding an amount of time consumed and/or an amount of time remaining in an automatically expiring system (or corresponding information for the number of cycles remaining, when cycles rather than time are the relevant measure) (for example, when service personnel has been provided access with a remote control device to facilitate their entry into a given premises); and/or
providing commercial content such as advertisements for servicing assistance and materials, system upgrades, additional components and equipment, feature enhancements, and the like.
To further facilitate these and other content and interactive displays of information, and referring now to
Such formats can differ with respect to quantity or completeness of information provided (for example, a more complete display of information may be provided to one user as compared to another user), colors utilized and/or graphics applied, location of information on a display, and/or location of live interactive areas on a touch screen display (for example, an activation area for use during a force setting calibration activity may be located relatively high on a wall-mounted user-input interface in order to place that activation area out of the reach of small children), and so forth. The data received can comprise, for example, information regarding an identify of a specific user, to thereby permit selection and use of specific display formats for different users.
As but one illustrative example of many, when the active display comprises a part of a wall-mounted user-input interface, and when the user is known to be effecting a part of an installation process for the movable barrier operator system, and further when a current part of that installation process requires the user to be located physically proximal to the movable barrier operator instead of the wall-mounted user-input interface, information useful to the user can be displayed using relatively large font sizing in order to permit easier viewing and comprehension of the displayed information by the remotely located user.
In general, the provision of an active display having at least numeric presentation capability when joined in conjunction with a wall-mounted remote user-input interface or at least alphanumeric and/or graphic presentation capability when joined in conjunction with other movable barrier operator system components yields numerous benefits. The resultant ease of communication (both outwardly and in support of interactive communications) can be further leveraged to permit more reliable installation or use of one or more elements of a movable barrier operator system, a greater breadth and depth of operating features and options, and improved security, reliability, and enjoyment of use.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
This application is a continuation of U.S. patent application Ser. No. 10/843,222 entitled MOVABLE BARRIER OPERATOR SYSTEM DISPLAY METHOD AND APPARATUS and filed on May 11, 2004, now U.S. Pat. No. 7,750,890, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4408251 | Kaplan | Oct 1983 | A |
4520576 | Vander Molen | Jun 1985 | A |
4821027 | Mallory et al. | Apr 1989 | A |
5429399 | Geringer et al. | Jul 1995 | A |
5565843 | Meyvis | Oct 1996 | A |
5630017 | Gasper et al. | May 1997 | A |
5680134 | Tsui | Oct 1997 | A |
5841390 | Tsui | Nov 1998 | A |
5986561 | Kuruvilla et al. | Nov 1999 | A |
6005508 | Tsui | Dec 1999 | A |
6051947 | Lhotak et al. | Apr 2000 | A |
6064303 | Klein et al. | May 2000 | A |
6104334 | Allport | Aug 2000 | A |
6111374 | Fitzgibbon et al. | Aug 2000 | A |
6184787 | Morris | Feb 2001 | B1 |
6344817 | Verzulli | Feb 2002 | B1 |
6388412 | Reed et al. | May 2002 | B1 |
6397186 | Bush et al. | May 2002 | B1 |
6519049 | Nagasaka | Feb 2003 | B1 |
6650248 | O'Donnell et al. | Nov 2003 | B1 |
6661340 | Saylor et al. | Dec 2003 | B1 |
6741052 | Fitzgibbon | May 2004 | B2 |
7013355 | Chambers | Mar 2006 | B2 |
7111788 | Reponen | Sep 2006 | B2 |
7123128 | Mullet et al. | Oct 2006 | B2 |
7181203 | Gregori | Feb 2007 | B2 |
7194412 | Mays | Mar 2007 | B2 |
7207142 | Mullet | Apr 2007 | B2 |
7750890 | Fitzgibbon et al. | Jul 2010 | B2 |
20020135461 | Nuesser et al. | Sep 2002 | A1 |
20030018478 | Mays | Jan 2003 | A1 |
20030023881 | Fitzgibbon et al. | Jan 2003 | A1 |
20030028380 | Freeland et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20050151622 | McMahon | Jul 2005 | A1 |
20050176400 | Mullet et al. | Aug 2005 | A1 |
20050256718 | Robb et al. | Nov 2005 | A1 |
20060158344 | Bambini et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
1404032 | Mar 2003 | CN |
1 280 109 | Jan 2003 | EP |
1 349 146 | Oct 2003 | EP |
2 726 955 | May 1996 | FR |
2 402 431 | Dec 2004 | GB |
2 408 063 | May 2005 | GB |
2 402 434 | Jul 2010 | GB |
WO 9428675 | Dec 1994 | WO |
WO 0147130 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100238117 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10843222 | May 2004 | US |
Child | 12794366 | US |