This invention relates generally to movable barrier operators.
Movable barrier operators are well known in the art. Such mechanisms typically serve to use an electric motor to selectively move a movable barrier between open and closed positions. Such operators often have lighting associated therewith, either integral to the operator housing or physically separated from the operator housing. Many times such lighting will be activated by the operator for the duration of moving the movable barrier from one position to another plus some set period of time thereafter (such as four and one half minutes).
Such prior art solutions are adequate for some applications. There are, however, situations where such solutions are not fully suitable. For example, using the same amount of time to maintain the light in an illuminated state regardless of whether the movable barrier has just closed or just opened constitutes a compromise representing an average solution. Furthermore, present designs usually offer only a fixed selection of lights and a fixed orientation of those lights. Again, such designs are oriented towards satisfying a sense of average demand and not the specific needs of a specific user. Also, such prior art movable barrier operators typically provide a fixed lighting scheme; that is, regardless of what options may otherwise be available, the lights tend to illuminate and extinguish in accordance with an original built-in lighting scheme and offer little user opportunity to customize the scheme in any way.
The above needs are at least partially met through provision of the movable barrier operator with multiple lighting schemes and method described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are typically not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
Generally speaking, pursuant to these various embodiments, a movable barrier operator is configured to have a plurality of ambient light drivers (such that lights can be operably coupled to the drivers to facilitate control of the lights via the movable barrier operator). In general, the movable barrier operator can operate in at least two modes of operation. When operating in a first mode of operation, the operator controls the ambient lights using a first control scheme. When operating in a second mode of operation, the operator controls the ambient lights using a second control scheme. The first and second control schemes are different from one another.
For example, the number of lights used for each mode of operation can be varied and/or the manner of use can be varied for some or all of the lights as used during each mode of operation. In a preferred embodiment, the user has an ability to readily select particular variations to thereby allow the user to customize the lighting functionality to accommodate a specific installation. In some embodiments, the mode of operation itself can vary to accommodate corresponding operational states of the movable barrier operator. This additional flexibility offers an even greater range of customization to the user.
Referring now to
In this embodiment, each light driver 11A–11C couples individually to a corresponding ambient light source 12A–12C, again as well understood in the art. Such light sources serve to provide ambient light to nearby surroundings (as versus, for example, merely serving to provide user-discernable signaling as occurs with light sources such as light emitting diodes). Various light sources can be successfully used herein, including incandescent, fluorescent, mercury vapor, sodium filament, and other as well. In addition, though only one light source is shown in this embodiment as being connected to a given light driver, if desired, additional light sources can be coupled to any given light driver as may be appropriate to a given application. In addition, as depicted, only three light drivers 11A–11C are coupled to the movable barrier operator. If desired, additional (or fewer) light drivers can be used as appropriate.
In this embodiment, a wireless receiver 13 and a user interface 14 are also coupled to the movable barrier operator 10. The wireless receiver 13 can be a typical movable barrier operator wireless receiver that receives appropriately modulated radio frequency signals that can include transmitter identification and/or user instructions regarding desired operation of the operator 10 and a corresponding movable barrier. Such a receiver 13 can also be used to support other functionality as described below in more detail. The user interface 14 can be as simple as a single switch or dual inline package switch (a so-called DIP switch) or as complex as a keypad, touchscreen display, or voice recognition mechanism as befits the needs of a given application. In at least some of the embodiments described below, this user interface 14 can serve to facilitate selection and/or programming of specific ambient light control schemes.
As depicted, the light drivers 11A–11C are all physically coupled to the movable barrier operator 10. Such an arrangement represents a fairly typical mode of installation. If desired, however, and referring now to
So configured, the movable barrier operator 10 can receive user instructions via wireless signals or via the user interface 14. Such instructions can facilitate desired operation of the various ambient light sources 12A–12C that are under the control of the movable barrier operator 10 as described below in more detail.
Referring now to
It should be understood that this embodiment presents only one possible configuration for illustrative purposes only. Fewer or greater numbers of light sources could be used, either in a housing-mounted form factor or as separate outboard elements. In addition, light sources could also be disposed outside the garage 30 as desired.
Pursuant to the embodiment presented below, the operator 10 can control these various lights in various ways depending upon the specific operational mode and/or operational state of the movable barrier operator 10. A few examples in this regard are as follows:
When the movable barrier operator 10 is placed into an OPEN mode of operation, the operator 10 could activate all of the light sources 12A–12E. When the movable barrier operator 10 is placed in a CLOSE mode of operation, however, the operator 10 could instead activate only a single light source (such as the centrally positioned housing-mounted light source 12A).
When the movable barrier operator 10 receives either an OPEN or CLOSE command via a wireless instruction from a specific user's remote transmitter (as is well understood in the art), the operator 10 can identify the user via the unique identification code that accompanies the command. By pre-assigning a specific side of the garage 30 to this specific user (for example, the right side of the garage 30 could be pre-assigned to the specific individual), the operator 10 can use this information to cause the corresponding light sources 12C and 12E for that side of the garage 30 to illuminate for the benefit of that specific user. Conversely, when a command is received from a second user who uses the left side of the garage 30, only the light sources 12B and 12D are illuminated.
When a wireless-based command is received, the movable barrier operator 10 will effect the command while causing illumination of only three of the light sources 12A, 12D, and 12E. When a user provides a command through a user interface switch 14, however, the movable barrier operator 10 will effect the command while causing illumination of all five light sources 12A–12E.
It should be clear that the movable barrier operator 10 can effect various lighting operational schemes to accommodate various operating modes and operational states. Such capability can be inflexibly programmed into the movable barrier operator 10 during manufacturing such that the operator 10 will always respond the same way to such stimuli. In a preferred embodiment, however, the operator's programmability is leveraged to at least permit a user to themselves associate a given lighting operational scheme (from amongst a plurality of such schemes) with a given operational mode or state and preferably to permit user programming of unique lighting operational schemes themselves.
With reference to
For example, and referring now to
To continue this example, when the operational state is determined 61 to instead reflect reception of a wireless command from a second user, and the corresponding mode of operation is determined 64 to be the CLOSE operation, a second lighting control scheme is implemented 65 (for example, only a single light source, different than the two light sources used above, is actuated).
So configured, it should be understood that a large number of unique lighting schemes can be accommodated and correlated with various operating modes and/or operational states. Again, preferably, the movable barrier operator 10 is provided with a user interface 14 (or a sufficiently capable wireless interface) to permit a user to at least associate pre-stored lighting schemes with at least some operating modes/states and, if desired, to permit a user to specify and define custom lighting schemes to meet their specific needs.
Such a movable barrier operator 10 will support wide and varied lighting capability both at the time of installation and later (particularly as and when additional light sources are added to an existing movable barrier operator). Furthermore, such an operator 10 will readily accept alterations to whatever lighting schemes are selected. Such flexibility allows a user to modify the lighting response of the operator 10 to suit changing needs over time.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
Number | Name | Date | Kind |
---|---|---|---|
4549092 | Matsuoka et al. | Oct 1985 | A |
5576701 | Heitschel et al. | Nov 1996 | A |
5589747 | Utke | Dec 1996 | A |
6326754 | Mullet et al. | Dec 2001 | B1 |
6486795 | Sobel et al. | Nov 2002 | B1 |
6495821 | Smith et al. | Dec 2002 | B1 |
6522258 | Lott | Feb 2003 | B1 |
6737968 | Ergun et al. | May 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20030214806 A1 | Nov 2003 | US |