1. Technical Field
The present invention relates to a movable contact element used for operating various electronic apparatuses and a switch using the same.
2. Background Art
Recently, a variety of high-performance electronic apparatuses such as mobile phones or car navigation systems are being developed. With the development of electronic apparatuses, there is demand for a device which can perform various operations on a movable contact element used for operating the electronic apparatuses or a switch.
Such a conventional movable contact element and a switch using the same will be described with reference to
Substrate 105 has a plurality of wiring patterns (not shown) formed on a top surface and a lower surface thereof. Each of fixed contacts 106 is composed of central fixed contact 106A (hereinafter, referred to as contact 106A) and outer fixed contact 106B (hereinafter, referred to as contact 106B). Contact 106A has a circular shape and is formed on a top surface of substrate 105. Contact 106B has a horseshoe shape and is formed on the top surface of substrate 105 so as to surround contact 106A. As such, the plurality of fixed contacts 106 are provided on the top surface of substrate 105.
Cover sheet 101 is bonded to the top surface of substrate 105, and the outer periphery of movable contact 102 is loaded on contact 106B. Further, the central portion of the lower surface of movable contact 102 is disposed to face contact 106A with a predetermined gap therebetween. In such a manner, switch 150 is constructed.
Switch 150 constructed in such a manner is mounted on an operating portion of an electronic apparatus (not shown), and an operation body (not shown) is disposed above switch 150 so as to move up and down or swing. Further, the plurality of fixed contacts 106 are connected to an electronic circuit (not shown) of the electronic apparatus through the wiring patterns.
In such a construction, the operation body is pressed or swung. Then, the lower surface of the pressed or swung operation body presses a top surface of cover sheet 101. When the top surface of cover sheet 101 is pressed, cover sheet 101 is bent. Further, the dome-shaped central portion of movable contact 102 is pressed. When a predetermined pressing force is applied to movable contact 102, movable contact 102 is elastically inverted downward with a click feeling such that a central portion of a lower surface of movable contact 102 comes in contact with contact 106A. Accordingly, contact 106A and contact 106B are electrically connected to each other through movable contact 102.
When the pressing force applied to the operation body is released, movable contact 102 elastically restores upward by an elastic restoring force of movable contact 102, and the central portion of the lower surface of movable contact 102 is separated from contact 106A. Accordingly, the electrical connection between contact 106A and contact 106B is cut off.
The electronic circuit of the electronic apparatus detects the electrical connection and disconnection among the plurality of fixed contacts 106. For example, when the operation body is operated upward in a state where a plurality of menus are displayed on a display screen (not shown) such as a liquid crystal display element of an electronic apparatus, a cursor or pointer displayed on the display screen is moved upward by a predetermined distance.
Further, when the operation body is operated in the right direction, the electronic circuit detects the electrical connection and disconnection of fixed contact 106 positioned in the vicinity of the operated operation body. Then, the cursor or pointer displayed on the display screen is moved in the right direction by a predetermined distance.
That is, as the operation body is pressed or swung, movable contact 102 under the operated operation body is elastically inverted, and the electrical connection and disconnection of fixed contacts 106 is performed. Further, the electronic circuit of the electronic apparatus detects at which place the electrical connection and disconnection of fixed contacts 106 is performed. Accordingly, the operation or switching of functions of the electronic apparatus is performed in accordance with the operation of the operation body.
Such conventional switch 150 is disclosed in Japanese Patent Unexamined Publication No. 2003-123596, for example.
However, in conventional movable contact element 104 and switch 150 using the same, a large number of movable contacts 102 and fixed contacts 106 are needed to execute various operations. Further, an operation body having a complicated shape is also required. Therefore, the number of parts composing switch 150 increases, and the construction of switch 150 becomes complicated. As a result, movable contact 102 and switch 150 become expensive.
The present invention provides a movable contact element, which has a simple construction and can perform various operations, and a switch using the same.
The movable contact element according to the present invention includes a movable contact having a dome shape, a cover sheet, and a pressure sensitive conductive sheet. On a lower surface of the cover sheet, the movable contact is bonded. On a top surface of the pressure sensitive conductive sheet, the cover sheet is stacked. Through such a construction, it is possible to obtain a movable contact element which has a simple construction and can perform various operations.
Further, the switch according to the present invention includes a substrate, a movable contact element, and a fixed contact. The movable contact element has a movable contact having a dome shape, a cover sheet having the movable contact bonded to its lower surface, and a pressure conductive sheet having the cover sheet stacked on its top surface. The fixed contact is formed on a top surface of the substrate so as to face a lower surface of the pressure sensitive conductive sheet. Through such a construction, it is possible to obtain a switch which has a simple construction and can perform various operations.
Hereinafter, preferred embodiments of the present invention will now be described with reference to
A first embodiment of the present invention will be described with reference to
As shown in
Sheet 15 has base sheet 13 and pressure sensitive conductive layer 14 (hereinafter, referred to as conductive layer 14). Base sheet 13 made of the same material as that of cover sheet 11 has flexibility and is formed in a film shape. Conductive layer 14 is provided on a lower surface of base sheet 13. As shown in
By bonding the plurality of cover sheets 11 on a top surface of sheet 15, the plurality of movable contacts 12 are loaded above conductive layer 14. Insulating layer 16 is formed on a portion of a lower surface of sheet 15, where conductive layer 14 is not formed, and a portion of a lower surface of conductive layer 14. Insulating layer 16 is formed of epoxy, polyester or the like. Further, insulating layer 16 may form a part of sheet 15.
Substrate 18 has a film shape or a plate shape. When substrate 18 has the film shape, such a material as polyethylene terephthalate or polycarbonate is used. When substrate 18 has the plate shape, such a material as paper phenol or glass epoxy is used. Further, substrate 18 has a plurality of wiring patterns (not shown) formed on top and lower surfaces thereof, the wiring patterns being made of copper foil or the like.
As shown in
Movable contact element 17 is loaded on the top surface of substrate 18. Conductive layer 14 faces contacts 19A, 19B, with a gap L2 of 10 to 100 μm therebetween. The gap L2 may be formed based on a thickness of insulating layer 16. In this case, the dimension of the gap L2 can be easily controlled with precision.
Switch 50 further has rubber sheet 20, push button 21, operation body 22, and case 23. Rubber sheet 20 is formed of such a material as a silicone rubber and an elastomer. Push button 21 and operation body 22 are made of a resin having an electrical insulating property. On a lower surface of rubber sheet 20, a plurality of pressing portions 20A are formed so as to correspond to respective movable contacts 12. Each of pressing portions 20A contacts to a top surface of respective cover sheets 11 corresponding to the central portions of the plurality of movable contacts 12. Further, above pressing portions 20A, push button 21 is disposed to vertically move. Similarly, operation body 22 is swingably disposed above pressing portions 20A. Push button 21 is disposed in opening 22A formed in the central portion of operation body 22. Operation body 22 is disposed on substrate 18 by using case 23. In the above-described manner, switch 50 is constructed. Case 23 is made of a resin having an electrical insulating property.
Switch 50 constructed in such a manner is mounted on an operating portion (not shown) of an electronic apparatus. As shown in
In such a construction, when push button 21 is pressed downward as shown in
On the lower surface of conductive layer 14, high resistor layer 14B, which has minute surface irregularities formed on its lower surface, is formed. Therefore, when the pressing force applied to push button 21 increases, high resistor layer 14B is deformed by the applied pressing force. Then, the contact area between conductive layer 14 and contacts 19A, 19B increases. Therefore, the contact resistance value between contact 19A and contact 19B decreases, and an output voltage which is to be applied to the electric circuit changes via resistor 24.
The relationship between an operating load P and an output voltage V from resistor 24 with respect to the stroke of the pressing applied to push button 21 changes as shown in
When the gap L2 between conductive layer 14 and contacts 19A, 19B is excessively large, a stroke from the operating load P2 when movable contact 12 is elastically inverted to the output voltage V2 at which the electrical connection is detected increases. As a result, the operation touch feeling becomes sluggish. Therefore, it is preferable that the gap L2 is set in the range of 10 to 100 μm. More preferably, the gap L2 is set in the range of 20 to 40 μm.
When push button 21 is strongly pressed, the operating load P increases again, and simultaneously the connection resistance value between contact 19A and contact 19B decreases. Accordingly, the output voltage V curvedly increases. As such, the change in connection resistance value between contact 19A and contact 19B is easily detected by the electronic circuit.
When the pressing force applied to push button 21 is released, movable contact 12 elastically restores upward by an elastic restoring force of the movable contact 12. Similarly, sheet 15 also restores to an original state by an elastic restoring force thereof. Therefore, conductive layer 14 is separated from contacts 19A, 19B such that the electrical connection between contact 19A and contact 19B is cut off.
At a point of time when the output voltage V decreases to the threshold voltage V1 or less, the electronic circuit detects the electrical disconnection between contact 19A and contact 19B. That is, the electronic circuit detects that switch 50 is turned off.
As shown in
Through the pressing operation of push button 21 or the swing operation of operation body 22, the electronic circuit detects the electrical connection and disconnection among the plurality of contacts 19A, 19B or the change in connection resistance value between contact 19A and contact 19B. For example, as shown in
When operation body 22 is continuously pressed by a certain pressing force, the connection resistance value between contact 19A and contact 19B changes. That is, the electronic circuit detects the output voltage V output via resistor 24 such that cursor 31 is continuously moved upward. When operation body 22 is strongly pressed in such a manner that the connection resistance value between contact 19A and contact 19B significantly changes, the moving speed of cursor 31 increases.
Alternatively, as shown in
As such, in a state where cursor 31 or pointer 32 is moved in the top and lower direction or in the left and right direction so as to be positioned on a desired menu or map, push button 21 is pressed. Then, as the electronic circuit detects that push button 21 is pressed, the selection is then finalized. Such an operation switches display screen 30 into a screen displaying a plurality of music titles or a screen displaying an expanded map of the selected position on the map.
In other words, the turn-on/off of the plurality of contacts 19A, 19B, that is, the electrical connection and disconnection among them is detected in accordance with the swing operation of operation body 22 or the pressing operation of push button 21. After that, by the swing operation or pressing operation is continuously performed, the connection resistance value between contact 19A and contact 19B changes, and the electronic circuit detects the change in connection resistance value. Accordingly, in accordance with the electric connection and disconnection between contact 19A and contact 19B or the change in connection resistance value, the movement amount or the moving speed of cursor 31 or pointer 32 is varied. As described above, various operations are realized in the electronic apparatus having switch 50 mounted thereon.
In movable contact element 17 according to the present invention, substantially dome-shaped movable contact 12 made of a conductive thin metal plate is bonded to the lower surface of cover sheet 11. Further, movable contact element 17 is constructed by bonding cover sheet 11 to the top surface of sheet 15. Further, switch 50 is constructed by bonding movable contact element 17 to the top surface of substrate 18 on which contact 19A and contact 19B facing each other are formed. Accordingly, the electric connection and disconnection is performed with a click feeling caused by a pressing operation. Further, the change in connection resistance value between contact 19A and contact 19B, which occurs when pressing is continuously performed after the pressing operation, is also easily detected. Therefore, it is possible to obtain movable contact element 17, which has a simple structure and can be operated in various manners, and switch 50 using movable contact element 17.
Conductive layer 14 and contact 19A, 19B are disposed to face each other, with the predetermined gap L2 therebetween. Accordingly, the insulation between conductive layer 14 and contacts 19A, 19B is reliably secured. Further, as the gap L2 is set in the range of 10 to 100 μm, preferably, 20 to 40 μm, an excellent click touch feeling of movable contact 12 and the electrical connection and disconnection without a time lag are realized.
The electronic circuit detects the electrical connection and disconnection between contact 19A and contact 19B by using the predetermined threshold voltage V1. Accordingly, the electrical connection and disconnection by switch 50 and the change in resistance value after the electrical connection and disconnection are detected without an error. As a result, the operation of the electronic apparatus having movable contact element 17 or switch 50 mounted therein is reliably performed.
As shown in
In this embodiment, it has been described that each movable contacts 12 is bonded to the lower surfaces of corresponding cover sheets 11, and cover sheets 11 is bonded to the top surface of sheet 15. However, movable contact element 17 may be constructed in such a manner that the plurality of movable contacts 12 are bonded to the lower surface of one large cover sheet 11, and cover sheet 11 is bonded to the top surface of sheet 15. In this case, it is possible to obtain the same actions and effects.
Further, the construction of the composite switch has been described, in which the plurality of movable contacts 12 are loaded on the top surface of sheet 15, and movable contacts 12 are pressed or swung by push button 21 or operation body 22. However, a variety of switches such as a single push switch and a seesaw switch which can be swung in the left and right direction may be used. In this case, it is possible to obtain the same actions and effects.
Further, the construction of sheet 15 has been described, in which low resistor layer 14A and high resistor layer 14B are stacked on the lower surface of base sheet 13, thereby forming conductive layer 14. However, pressure sensitive conductive layer 14 or pressure sensitive conductive layer 15 obtained by dispersing conductive particles such as carbon into a base material such as silicone rubber may be used.
Hereinafter, a second embodiment of the present invention will be described with reference to
As shown in
As shown in
On the top surface of substrate 18, movable contact element 17A is loaded. Movable contact element 17A has cover sheets 11, movable contacts 12, and sheet 15. Further, the central portion of conductive layer 14 disposed on the lower surface of sheet 15 faces contacts 29B, 29C with a predetermined gap L2 formed therebetween. The outer periphery of the lower surface of conductive layer 14 is loaded on contact 29A so as to come in contact with contact 29A. Accordingly, conductive layer 14 and contact 29A are electrically connected to each other at all times.
Switch 50A constructed in such a manner is mounted on the operating portion of the electronic apparatus. Contact 29B is connected to the electronic circuit of the electronic apparatus via first resistor element 24 from wiring patterns. Similarly, contact 29C is connected to the electronic circuit of the electronic apparatus via second resistor element 24A (hereinafter, referred to as resistor 24A). Further, contact 29A is connected to the power supply. In such a manner, the input device is constructed. Resistor 24A has a larger electric resistance value than resistor 24.
In the above-described construction, when operation body 22 is swung or push button 21 is pressed, rubber sheet 20 is bent downward. By rubber sheet 20 is bent, pressing portion 20A positioned at the place where the swing or pressing operation is performed presses movable contact 12 through cover sheet 11. When a predetermined pressing force is applied to movable contact 12, movable contact 12 is elastically deformed downward with a click feeling such that sheet 15 is bent downward. By sheet 15 is bent downward, the lower surface of conductive layer 14 comes in contact with contacts 29B, 29C. Accordingly, contact 29B and contact 29C are electrically connected to each other through conductive layer 14. Further, a power supply current is supplied to contact 29A from the power supply. Accordingly, contacts 29A, 29B, 29C are electrically connected to one another through conductive layer 14. Further, the elastic deformation of movable contact 12 is such a deformation behavior that the top portion of dome-shaped movable contact 12 is inverted in the reverse direction.
After that, when a pressing force is further applied to operation body 22 or push button 21, similarly to the constitutions of the first embodiment, the contact area between conductive layer 14 and contacts 29B, 29C increases, and the connection resistance value between conductive layer 14 and contact 29B and between conductive layer 14 and contact 29C decreases. Accordingly, as shown in
In the second embodiment, although the threshold voltage V1 is not applied, the detection of electrical connection and disconnection of switch 50A is accurately performed by the output voltage V0 from the side of contact 29C. That is, immediately after or before movable contact 12 is elastically inverted and the operating load changes from P1 to P2, the detection of electrical connection and disconnection of switch 50A, which is referred to as electrical turn-on/off, is accurately performed by the output voltage V0. Further, even when a certain level of variation is present in the threshold voltage V1, the detection of electrical connection and disconnection of switch 50A is accurately performed.
That is, immediately after or before movable contact 12 is elastically inverted by the output voltage V0 from the side of contact 29C, the detection of electrical connection and disconnection is performed. Further, the change in connection resistance value between contact 29B and contact 29C, which is generated by an operation after the detection of electrical connection and disconnection, is detected by the electronic circuit through the output voltage V from the side of contact 29B.
The electronic circuit detects the electrical connection and disconnection among the plurality of contacts 29A, 29B, 29C or the change in connection resistance value, which is generated by the pressing operation of push button 21 or the swing operation of operation body 22. That is, as shown in
According to the second embodiment, contact 29B and contact 29C are disposed in the central portion of conductive layer 14 so as to face each other with the predetermined gap L1 therebetween. Further, the outer periphery of conductive layer 14 is connected to contact 29A. Accordingly, in addition to the same effect as that of the first embodiment, the detection of electrical connection and disconnection of switch 50A is more reliably performed, immediately after or before movable contact 12 is elastically inverted.
Further, the outer periphery of movable contact 12 is loaded above the outer periphery of conductive layer 14 which comes in contact with contact 29A. Therefore, when the above-described pressing or swing operation is performed, the outer periphery of the lower surface of conductive layer 14 is pressed against a top surface of contact 29A by the outer periphery of movable contact 12. Accordingly, the electrical connection of switch 50A is reliably performed.
As shown in
As shown in
As shown in
As shown in
In this embodiment, it has been described that each movable contact 12 is bonded to the lower surface of corresponding cover sheet 11, and cover sheet 11 is bonded to the top surface of sheet 15. However, movable contact element 17A may be constructed in such the manner that the plurality of movable contacts 12 are bonded to the lower surface of one large cover sheet 11, and cover sheet 11 is bonded to the top surface of sheet 15. In this case, it is possible to obtain the same actions and effects.
Further, the construction of the composite switch has been described, in which the plurality of movable contacts 12 are loaded on the top surface of sheet 15, and movable contacts 12 are pressed or swung by push button 21 or operation body 22. However, the variety of switches such as the single push switch and the seesaw switch which can be swung in the left and right direction may be used. In this case, it is possible to obtain the same actions and effects.
Further, the construction of sheet 15 has been described, in which low resistor layer 14A and high resistor layer 14B are stacked on the lower surface of base sheet 13, thereby forming conductive layer 14. However, pressure sensitive conductive layer 14 or pressure sensitive conductive layer 15 obtained by dispersing conductive particles such as carbon into the base material such as silicone rubber may be used.
Number | Date | Country | Kind |
---|---|---|---|
2007-147660 | Jun 2007 | JP | national |
2007-289486 | Nov 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4315238 | Eventoff | Feb 1982 | A |
4463234 | Bennewitz | Jul 1984 | A |
5296837 | Yaniger | Mar 1994 | A |
5760352 | Ishihara et al. | Jun 1998 | A |
6080941 | Yokobori | Jun 2000 | A |
6351205 | Armstrong | Feb 2002 | B1 |
6670562 | Kaneko | Dec 2003 | B2 |
Number | Date | Country |
---|---|---|
1015276 | Dec 2004 | BE |
1148254 | Apr 1997 | CN |
1460910 | Dec 2003 | CN |
0441993 | Aug 1991 | EP |
11039983 | Feb 1999 | JP |
11039984 | Feb 1999 | JP |
2003-123596 | Apr 2003 | JP |
2003-331681 | Nov 2003 | JP |
2003331681 | Nov 2003 | JP |
2007012484 | Jan 2007 | JP |
2005-116976 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080296140 A1 | Dec 2008 | US |