The present invention relates to a movable contact unit having a plurality of push switches used in operation section of downsized electronic equipment such as cellular phone and the like, panel switch using the movable contact units and electronic equipment having the panel switch.
Nowadays, along with the advance of performance and diversity of downsized electronic equipment such as cellular phones and the like, panel switch having a plurality of arranged push switches and mainly used in operation section of them is required to have high accuracy and usability as well as cheap prices.
A conventional movable contact unit for push switches used in operation section of downsized electronic equipment and a panel switch using the movable contact units are described with reference to FIG. 10 through FIG. 13. Here, perpendicular scale in each drawing is drawn enlarged for easy understanding.
Panel switch 8 mentioned above is mounted on an operation section of electronic equipment. When convex upper surface of a movable contact 1 is depressed by operation button (not shown) through cover sheet 3, convex bottom surface of movable contact 1 performs resilient motion with a click feeling to connect central stationary contact. Then, central stationary contact 7A of stationary contact substrate 5 and outside stationary contact 7B are electrically coupled to make a push switch ON stage. Upon release of depression from operation button, a resilient restoring force of movable contact 1 acts to disconnect convex bottom surface from central stationary contact 7A to return to push switch OFF stage as shown in FIG. 12.
However, in above mentioned conventional movable contact unit 4 and panel switch using the movable contact unit, ingress of dust between movable contact unit 4 and stationary contact substrate 5 moves in between movable contact 1 and stationary contact 7 to cause problems of loose connection in push switch of panel switch, during use of electronic equipment incorporated with panel switch having a combination of movable contact unit 4 and stationary contact substrate 5.
A movable contact unit disclosed in this invention comprises:
The present invention is described by following preferred embodiments with reference to FIG. 1 through FIG. 9. Here, perpendicular scale in each drawing is drawn enlarged for easy understanding and the similar configuration described in the conventional art have the same reference marks and the detailed descriptions thereof are simplified.
First Preferred Embodiment
In
The above mentioned configuration is the same as conventional art but movable contact unit 10 used in the first preferred embodiment for panel switch having a plurality of push switches is provided with weak adhesive layer 9 on bottom surface of base sheet 2 except through holes 2A.
A manufacturing method of movable contact unit 10 having weak adhesive layer 9 is described with reference to cross-sectional view shown in FIG. 3.
First, whole bottom surface of flexible insulation substrate 11 of base sheet 2 is coated with a weak adhesive material to form weak adhesive layer 9 on the surface as shown in FIG. 3A.
In addition, a combination of flexible insulation substrate 11 and second flexible insulation substrate 12, thinner than flexible insulation substrate 11, bonded under weak adhesive layer 9 is die-punched to provide a plurality of through holes 2A in predetermined positions.
After the above processing, movable contacts 1 are placed on every through hole 2A from upper side of flexible insulation substrate 11, corresponds to base sheet 2 as shown in FIG. 3B.
Then, cover sheet 3 formed from a flexible insulation substrate and coated with adhesive material 3A on bottom surface is bonded on individual convex upper surface of movable contact 1 to hold movable contact 1, then cover sheet 3 is fixed on upper surface of base sheet 2.
Finally, second flexible insulation substrate 12 is peeled off from bottom surface of weak adhesive layer 9 to form a movable contact unit 10 having weak adhesive layer 9.
Here, weak adhesive material coated on bottom surface of flexible insulation substrate 11 contains a higher ratio of hardener to base resin compared with ordinary adhesive materials. Moreover, coating thickness of 5 to 10 □m for weak adhesive layer 9 is approx. one third of typical adhesive coating thickness. Bonded substrate can be peeled off easily without any damage on the surface, as peeling-off strength from weak adhesive layer 9 formed as mentioned above is of the order of approx. 100 gf/25 mm that is about one tenth for typical adhesives.
In addition, in above mentioned manufacturing method, through holes 2A provided on base sheet 2 are punched out in larger size than outer diameter of round dome shaped movable contact 1 as shown in a bottom view of movable contact unit in FIG. 4.
Movable contact 1 is fixed by cover sheet 3 to keep a certain gap around movable contact 1 from inside diameter of through hole 2A, correspond to weak adhesive layer 9 (shown in hatching in the drawing).
Consequently, movable contact unit 10 can perform with an acceptable click feeling by depressing operation, as weak adhesive layer 9 does not influence round dome shaped movable contact 1.
Moreover, cover sheet 3 may not be applied individually as mentioned above, but can be a single sheet for fixing a plurality of neighboring movable contacts all together.
Additionally, if weak adhesive layer 9 is applied keeping a certain gap left from circumference of through hole 2A, adhesive layer 9 affects on movable contact 1 far less than conventional art.
Peripheral edge of each movable contact 1 of movable contact unit 4 is placed on corresponding peripheral stationary contact 7B such that convex bottom surface of movable contact 1 faces each central stationary contact 7A with a certain gap.
Basing on small hole 5A of substrate 5 and small hole 2B of base sheet 2 for positioning, movable contact unit 10 is stacked on stationary contact substrate 5 and is bonded together using weak adhesive layer 9 applied on bottom surface of base sheet 2 of movable contact unit 10 to form panel switch 13 having a plurality of arranged push switches.
Namely, operation of panel switch 13 to depress convex upper surface of round dome shaped movable contact 1 through cover sheet 3 is the same as conventional art, but ingress of dust between base sheet 2 and stationary contact substrate 5 is prevented, as bottom surface of base sheet 2 of movable contact unit 10 and stationary contact substrate 5 is bonded together using weak adhesive layer 9.
In addition, even if ingress of dust between the two occurred, dust can not move further, which contributes to little occurrence of loose connection of push switch, and movable contact 1 performs a steady resilient action, as a steady positioning of each movable contact 1 and corresponding each stationary contact 7 is maintained.
Moreover, weak adhesive layer 9 to bond movable contact unit 10 with stationary contact substrate 5 together has a weak peeling-off strength as afore-mentioned, the same as conventional art without any weak adhesive layer 9, in case of, for example, combination change of movable contact unit 10 and stationary contact substrate 5, if necessary, movable contact unit 10 can be peeled off easily from bonded stationary contact substrate without any damage and both can be reused.
Next,
As shown in
Additionally, bonded stationary contact substrate 5 using weak adhesive layer 9 applied on bottom surface of base sheet 2 of movable contact unit 10 plays also a role of circuit board 18 for the electric equipment held in bottom side housing 15B. Namely, central stationary contact 7A and peripheral stationary contact 7B of each stationary contact 7 are mounted on upper surface of circuit board 18 directly.
Electric equipment with above configuration performs with steady operation condition and with little occurrence of loose connection in push switches of operation section due to a good dust-proof property as well as low machine profile and cheep prices. Moreover, movable contact unit 10 can be peeled off easily from circuit board 18 which acts as stationary contact substrate, together with weak adhesive layer 9, to exchange operation button 14 or fixing member 16 for a modification of operation section design of electronic equipment.
Second Preferred Embodiment
In addition, extension section 26A extended from base sheet 26 of movable contact unit 25 of the panel switch is provided at the bottom surface side of light guide 21, and is bonded on circuit board 28 of the electric equipment with weak adhesive layer 27 coated on bottom surface, to mount the extension section such that contacts bottom surface of light guide 21.
Movable contact unit 25 has an extended section of a predetermined length in one end of base sheet 26 consisted of whitish flexible insulation substrate with weak adhesive layer 27 coated on bottom surface as shown in an appearance view in FIG. 9. Extension section 26A is bonded flatly on plate-like circuit board 28 to act a light reflector for light guide 21.
The invention thus contributes a development of electronic equipment having brighter and steadier display section 23 with cheaper cost prices.
According to the above, as the bottom surface of base sheet of movable contact unit is bonded stationary contact substrate using weak adhesive layer, not only the ingress of dust between movable contact unit and stationary contact substrate is prevented but the dust, even if entered, is difficult to move further, which contributes to little occurrence of loose connection of push switch and to keep a steady positioning of each movable contact and corresponding each stationary contact.
Moreover, the movable contact unit has an advantageous capability of peeling movable contact unit off from bonded stationary contact substrate easily and without any damage.
Number | Date | Country | Kind |
---|---|---|---|
2001-349890 | Nov 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5225818 | Lee et al. | Jul 1993 | A |
5845766 | Sako et al. | Dec 1998 | A |
5975711 | Parker et al. | Nov 1999 | A |
5986228 | Okamoto et al. | Nov 1999 | A |
6417467 | Yamagata | Jul 2002 | B1 |
6548778 | Takahashi | Apr 2003 | B2 |
6604278 | Sera et al. | Aug 2003 | B2 |
6634090 | Koyama et al. | Oct 2003 | B2 |
6730869 | Teruyama et al. | May 2004 | B2 |
6768074 | Iwama | Jul 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20030089585 A1 | May 2003 | US |