The present disclosure relates to the field of aerial vehicle technology and, more particularly, to a movable device.
A navigation antenna is a component of a movable device and is usually installed horizontally at a top of a geometric center of the movable device to receive wireless signals transmitted from a satellite and convert the wireless signals through a receiver.
Usually, due to a need of industrial design, a metal profile of the movable device serves as a reflective surface for the navigation antenna. However, appearance of the movable device may have various shapes. The navigation antenna has a conformal shape as the movable device, to prevent generation of extra aerodynamic resistance to flight of the movable device. In these cases, it cannot be guaranteed that the navigation antenna is installed at the top of the geometric center of the movable device, and a metal profile of irregularly shaped movable device plays a role in guiding a direction pattern of the navigation antenna, and hence a direction pattern of the navigation antenna changes. To avoid changes to the direction pattern of the navigation antenna, in conventional approaches, the shape of the navigation antenna is changed, and various parameters of the navigation antenna are reevaluated to reduce changes to the direction pattern.
The above-mentioned process of suppressing the change of the direction pattern is achieved by changing the shape of the navigation antenna. However, changing the shape of the navigation antenna results in changes in antenna efficiency of the navigation antenna, and hence cannot ensure the efficiency of the antenna while improving the direction pattern of the antenna.
In accordance with the disclosure, there is provided a movable device including a fuselage and a navigation antenna arranged at an edge portion of the fuselage. The navigation antenna is tilted relative to the fuselage. One side of the navigation antenna proximal to a center portion of the fuselage is at a higher level than another side of the navigation antenna distal from the center portion of the fuselage.
Technical solutions of the present disclosure will be described with reference to the drawings. It will be appreciated that the described embodiments are some rather than all of the embodiments of the present disclosure. Other embodiments conceived by those having ordinary skills in the art on the basis of the described embodiments without inventive efforts should fall within the scope of the present disclosure.
In the specification, claims, and accompanying drawings of the present disclosure, the terms “first,” “second,” “third,” “fourth,” and the like (if exist) are intended to distinguish between similar objects but do not necessarily indicate an order or sequence. It should be understood that the data termed in such a way are interchangeable in proper circumstances so that the embodiments of the present disclosure described herein can be implemented, for example, in orders other than the order illustrated or described herein. Moreover, the terms “include,” “contain” and any other similar expressions mean to cover the non-exclusive inclusion, for example, a process, method, system, product, or device that includes a list of steps or units, and are not necessarily limited to those steps or units that are explicitly listed, but may include other steps or units not explicitly listed or inherent to such a process, method, system, product, or device.
As used herein, when a first component is referred to as “fixed to” a second component, it is intended that the first component may be directly attached to the second component or may be indirectly attached to the second component via another component. When a first component is referred to as “connecting” to a second component, it is intended that the first component may be directly connected to the second component or may be indirectly connected to the second component via a third component between them. The terms “perpendicular,” “horizontal,” “left,” “right,” and similar expressions used herein are merely intended for description.
Unless otherwise defined, all the technical and scientific terms used herein have the same or similar meanings as generally understood by one of ordinary skill in the art. As described herein, the terms used in the specification of the present disclosure are intended to describe example embodiments, instead of limiting the present disclosure. The term “and/or” used herein includes any suitable combination of one or more related items listed.
Further, in the present disclosure, the disclosed embodiments and the features of the disclosed embodiments may be combined when there are no conflicts.
Generally, for an unmanned aerial vehicle (UAV), a navigation antenna may be used as a built-in antenna and arranged in a middle of interior of a housing of the movable device, such as at a center of a horizontal plane. For example, the housing of the movable device may include a regular cuboid, and the navigation antenna may be horizontally arranged at a top of geometric center of the movable device, parallel to a plane formed by a pitch axis and a roll axis.
Appearance of the movable device may have various shapes. Due to influence of the shape of the movable device, it cannot be guaranteed that the navigation antenna is arranged at a top of the geometric center of the movable device. Influence of reflective surface of metal profile of an irregularly shaped movable device may be reduced, and an influence of direction guiding on a direction pattern of the navigation antenna may be increased, deviating the direction pattern of the navigation antenna. In order to suppress deviation of the navigation antenna's direction pattern, in conventional approaches, the shape of the navigation antenna may be changed, and various parameters of the navigation antenna may be reevaluated to reduce changes to the direction pattern.
Antenna efficiency of the navigation antenna is related to a projection area of the navigation antenna. The larger the projection area, the higher the antenna efficiency. Thus, if the shape of the navigation antenna is changed, the projection area of the navigation antenna hence may also be changed. Accordingly, the antenna efficiency of the navigation antenna may be changed. Thus, the direction pattern cannot be improved while the antenna efficiency is maintained.
Thus, the present disclosure provides a movable device. In the movable device, the navigation antenna may be tilted and arranged at an edge portion of the movable device, to realize improvement of the direction pattern while ensuring the antenna efficiency.
In some embodiments, the movable device may include an unmanned aerial vehicle (UAV), an unmanned vehicle, an unmanned boat, and/or the like. Detailed descriptions of some embodiments are made by taking a UAV, e.g., a multi-rotor UAV, as an example of the movable device.
In some embodiments, the navigation antenna 2 for receiving a wireless signal may include a conformal shape with respect to the fuselage 1. The navigation antenna 2 may be arranged at an inner edge of the fuselage 1, and may be tilted relative to the fuselage 1. The tilt direction may be opposite to a deviation angle of direction pattern of the navigation antenna 2. In some embodiments, one side of the navigation antenna 2 proximal to a center portion of the fuselage 1 may be at a higher level than another side of the navigation antenna 2 distal from the center portion of the fuselage 1. Since the fuselage 1 exhibits a capacitive guiding effect, the direction pattern of the navigation antenna 2 may be deviated toward the center portion of the fuselage 1. A tilt direction of the navigation antenna 2 may be away from the center portion of the fuselage 2, such that a tilt angle of the navigation antenna 2 may be opposite to the deviation angle of the direction pattern of the antenna, to compensate for the guiding effect of the fuselage 1. Referring to
Referring to
Referring to
Referring to
In the embodiments of the present disclosure, the movable device includes the fuselage 1 and the navigation antenna 2 arranged tiltedly at an edge portion of the fuselage 1. One side of the navigation antenna 2 proximal to a center portion of the fuselage 1 may be at a higher level than another side of the navigation antenna 2 distal from the center portion of the fuselage 1. Since the fuselage 1 exhibits a capacitive guiding effect, the direction pattern of the navigation antenna 2 may be deviated toward the center portion of the fuselage 1. A tilt direction of the navigation antenna 2 may be configured to be away from the center portion of the fuselage 2, such that a tilt angle of the navigation antenna 2 may be opposite to the deviation angle of the direction pattern of the antenna, thus compensating for the guiding effect of the irregularly shaped fuselage 1 on the navigation antenna 2. The direction pattern can be improved while ensuring the antenna efficiency.
In some embodiments, the navigation antenna 2 may be arranged at an end portion of the fuselage 1. For example, the navigation antenna 2 may be arranged at a head portion of the movable device. As another example, the navigation antenna 2 may be arranged at a tail portion of the movable device. As another example, one navigation antenna 2 may be arranged at each of the head portion and the tail portion of the movable device.
In some embodiments, the movable device may have a radiative component such as a battery in a middle portion of the movable device. If the middle portion of the movable device is considered as a geometric center of the movable device, the battery or other component may occupy the position originally used for arranging the navigation antenna 2. In some embodiments, the navigation antenna 2 may be flexibly arranged at a head portion, a tail portion, or both head portion and tail portion of the fuselage 1, such that the navigation antenna 2 can co-exist with the radiative components such as the battery, without interfering with the radiative components. Referring to
In
Referring to
Further, when the movable device moves forward, the first navigation antenna 21 is in operation. When the movable device moves backward, the second navigation antenna 22 is in operation.
However, the present disclosure is not limited thereto. In some embodiments, the first navigation antenna 21 and the second navigation antenna 22 may operate at a same time. For example, the first navigation antenna 21 and the second navigation antenna may both be a real time kinematic (RTK) antenna, and correspondingly the first navigation antenna 21 and the second navigation antenna 22 may operate at a same time. In some embodiments, the first navigation antenna 21 and the second navigation antenna 22 may be switched to each other. For example, when the movable device moves forward, the first navigation antenna 21 may be in operation. If the signal of the first navigation antenna 21 is weak, the movable device can switch to the second navigation antenna 22 for receiving wireless signals through the second navigation antenna 22.
In some embodiments, a preset angle of the tilt of the navigation antenna 2 with respect to the fuselage 1 may increase as a distance between the navigation antenna 2 and the central portion of the fuselage 1 increases. For example, referring to
In some embodiments, the navigation antenna 2 may be arranged at a side position of the fuselage 1, such that the arranged position of the navigation antenna 2 is not limited to the head portion or the tail portion of the movable device, and the navigation antenna 2 can be arranged flexibly.
Referring to
Referring to
Referring to
In some embodiments, from the perspective of antenna polarization, the navigation antenna 2 may include a right-handed antenna or the like. From the perspective of frequency band, the navigation antenna 2 may include a global positioning system (GPS) antenna or a Russian's global navigation satellite system (GLONASS) antenna, a Wi-Fi antenna, etc. When the navigation antenna 2 includes a GPS antenna, the navigation antenna 2 may have, for example, a right hand circular polarization (RHCP), such that the navigation antenna 2 can smoothly receive wireless signals.
In some embodiments, the fuselage 1 may include a housing and an electricity compartment. The electricity compartment may be arranged in the middle of a top of the housing. The navigation antenna 2 may be arranged in the housing.
Referring to
In some embodiments, as shown in, e.g.,
In the embodiments described above in connection with
Referring to
In some embodiments, the navigation antenna 2 may include an active antenna instead of a passive antenna. Referring to
Referring to
Antenna efficiency of a navigation antenna is usually measured by four key parameters such as gain, voltage standing wave ratio (VSWR), noise figure, axial ratio, and/or the like. From the perspective of gain, detailed descriptions are made for improving performance of the direction pattern while ensuring antenna efficiency of the movable device in the movable device consistent with the disclosure. Referring to
Referring to
A method consistent with the disclosure can be implemented in the form of computer program stored in a non-transitory computer-readable storage medium. The computer program can include instructions that enable a computing device, such as a processor, a personal computer, a server, or a network device, to perform part or all of a method consistent with the disclosure, such as one of the example methods described above. The storage medium can be any medium that can store program codes, for example, a USB disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as example only and not to limit the scope of the disclosure, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of International Application No. PCT/CN2016/100438, filed on Sep. 27, 2016, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2016/100438 | Sep 2016 | US |
Child | 16365971 | US |