Not applicable.
Not applicable.
The invention relates to a movable gas-to-liquid system and process, and more particularly, to a gas-to-liquid system constructed on a marine vessel, such as an FPSO.
Fischer-Tropsch processes for converting synthesis gas into higher carbon number hydrocarbons are well known. The hydrocarbon products of a Fischer-Tropsch synthesis generally include a wide range of carbon number, ranging from between about 1 and about 100. The end products which may be recovered from the Fischer-Tropsch synthesis product, following separation, hydroprocessing or other upgrading, include but are not limited to liquified petroleum gas (“LPG”), naphtha, middle distillate fuels, e.g. jet and diesel fuels, and lubricant basestocks. Some of these end products, however, are more desirable than others for a variety of reasons, including for example, being marketable at a higher margin.
The desirability of an end product of a Fischer-Tropsch synthesis may also be dependent upon geographic location of the Fischer-Tropsch plant.
While technological advances within the energy industry have made dramatic improvements in lowering the cost of finding, producing and refining oil, vast quantities of remote and stranded gas still wait to be developed. Gas to liquid (“GTL”) technologies may assist in developing and monetizing these resources. Such GTL technologies are especially critical to offshore applications given that about one-half of the world's stranded gas is located within submerged formations.
In conventional GTL processes, synthesis gas is generated from natural gas via partial oxidation with oxygen, requiring an air separation plant to provide the oxygen. In conventional approaches, nitrogen is eliminated from the synthesis gas stream as an unwanted inert. In an air-based system, however, synthesis gas is produced by oxidation of hydrocarbons using air- or oxygen enriched air-carried oxygen, rather than separated oxygen. This eliminates the expense, as well as the extra space requirment, of an air separation plant. It thus reduces capital costs, making possible plants with considerably smaller footprints, and also provides for a safer operating environment.
Fischer-Tropsch plants of at least about 50,000 B/d production are generally required in order to lower the capital cost per barrel of daily capacity to an acceptable level. However, such Fischer-Tropsch plants require about 500 Mmcf/d of feed gas, or 5.4 trillion cubic feet over a thirty year period. Only about 2% of the known gas fields outside of North America are of such size.
Stranded natural gas reserves also may produce condensates and liquified petroleum gasses (LPGs), i.e. propanes and butanes, which may be recovered. Isolation of LPG components, with or without combination with Fischer-Tropsch produced LPGs, is not typically practiced in gas to liquid processes. However, failure to monetize LPG components further lowers the economic feasibility of accessing and producing stranded gas reserves.
There remains a need therefore, for a process for converting stranded gas reserves having a capacity less than 5.4 trillion cubic feet, and preferably having between about 0.5 and 5.0 trillion cubic feet natural gas, efficiently and economically into higher value hydrocarbon products. There remains a further need for a gas to liquid process monetizing LPG components recovered from stranded gas reserves as well as those LPG components produced in Fischer Tropsch processes. There remains a further need for a process which may be transported one or more times to natural gas reserve locations. There is a further need for a modularized system which may be configured and re-configured to produce a product slate adapted to meet market and local needs and conditions.
The invention provides a movable gas to liquids system and process. In some embodiments of the invention, a synthesis gas production unit, a synthetic crude production unit and a product upgrading unit are located on a movable platform wherein the units are operationally connected to each other.
In another embodiment of the invention, a process for converting natural gas to hydrocarbon liquids is provided wherein the process occurs on one or more movable platforms operationally connected to each other.
The term “Cx” where x is a number greater than zero, refers to a hydrocarbon compound having predominantly a carbon number of x. As used herein, the term Cx may be modified by reference to a particular species of hydrocarbons, such as, for example, C5 olefins. In such instance, the term means an olefin stream comprised predominantly of pentenes but which may have impurity amounts, i.e. less than about 10%, of olefins having other carbon numbers such as hexene, heptene, propene, or butene. Similarly, the term “Cx+” refers to a stream wherein the hydrocarbons are predominantly those having a hydrocarbon number of x or greater but which may also contain impurity levels of hydrocarbons having a carbon number of less than x. For example, the term C15+ means hydrocarbons having a carbon number of 15 or greater but which may contain impurity levels of hydrocarbons having carbon numbers of less than 15. The term “Cx-Cy”, where x and y are numbers greater than zero, refers to a mixture of hydrocarbon compounds wherein the predominant component hydrocarbons, collectively about 90% or greater by weight, have carbon numbers between x and y. For example, the term C5-C9 hydrocarbons means a mixture of hydrocarbon compounds which is predominantly comprised of hydrocarbons having carbon numbers between 5 and 9 but may also include impurity level quantities of hydrocarbons having other carbon numbers.
Unless otherwise specified, all quantities, percentages and ratios herein are by weight.
Synthesis gas (or “syngas”) useful in producing a Fischer-Tropsch product useful in the invention may contain gaseous hydrocarbons, hydrogen, carbon monoxide and nitrogen with H2:CO ratios from between about 0.8:1 to about 3.0:1. The hydrocarbon products derived from the Fischer-Tropsch reaction may range from methane to high molecular weight paraffinic waxes containing more than 100 carbon atoms. Operating conditions and parameters of an autothermal reactor for producing a syngas useful in the process of the invention are well known to those skilled in the art. Such operating conditions and parameters include but are not limited to those disclosed in U.S. Pat. Nos. 4,833,170; 4,973,453; 6,085,512; 6,155,039, the disclosures of which are incorporated herein by reference.
Fischer-Tropsch catalysts are also known in the art and include, those based upon for example, cobalt, iron, ruthenium as well as other Group VIIIB transition metals or combinations of such metals, to prepare both saturated and unsaturated hydrocarbons. The Fischer-Tropsch catalyst may also include a support, such as a metal-oxide support, including but not limited to silica, alumina, silica-alumina or titanium oxides. For example, a cobalt (Co) catalyst on transition alumina with a surface area of approximately 100-200 m2/g may be used in the form of spheres of 50-150 μm in diameter. The Co concentration on the support may be between about 5 wt % to about 30 wt %. Certain catalyst promoters and stabilizers may be used. The stabilizers include Group IIA or Group IIIB metals, while the promoters may include elements from Group VIII or Group VIIB. The Fischer-Tropsch catalyst and reaction conditions may be selected to be optimal for desired reaction products, such as for hydrocarbons of certain chain lengths or number of carbon atoms. Any of the following reactor configurations may be employed for Fischer-Tropsch synthesis: fixed bed, slurry bed reactor, ebullating bed, fluidizing bed, or continuously stirred tank reactor (“CSTR”). The FTR may be operated at a pressure from about 100 psia to about 800 psia and a temperature from about 300° F. to about 600° F. The reactor gas hourly space velocity (“GHSV”) may be from about 1000 hr−1 to about 15000 hr−1. Operating conditions and parameters of the FTR useful in the process of the invention are well known to those skilled in the art. Such operating conditions and parameters include but are not limited to those disclosed in U.S. Pat. Nos. 4,973,453; 6,172,124; 6,169,120; and 6,130,259, the disclosures of which are incorporated herein by reference.
Some embodiments of the invention provide a movable system optimized for the monetization of stranded gas reserves. In preferred embodiments of the invention, the stranded gas reserves are located in or near submerged formations, such as those found off-shore. The movable system may be moved, for example, by way of ocean- or sea-going vessels, such as a floating production, storage and offloading (FPSO) vessel. Movable vessels useful in the invention may be independently mobile or may require external mobility means, such as lift ship or tugboat. As used herein, the terms movable platforms and/or vessels include, without limitation, FPSOs, floating storage and offloading vessels (FSO), gravity based structures, spar platforms, tension leg platforms. However, other movable platforms are included in the scope of the invention, including trailer, truckbed, rail car or platform, or other movable forms on which the modules may be transported or moved from location to location. In some embodiments of the invention, the movable platform is maintained in place by any of a number of methods, including without limitation, fixed turret, removable turret, conventional mooring systems, anchoring, and/or suction piles.
Referring to
On the GTL FPSO 10 is located a syngas production unit which may include those components and may be of a type known in the art. Similarly, a synthetic crude production unit of a type and including components known to those in the art is also located on the GTL FPSO 10. In some embodiments, product upgrading units including components known in the art, such as hydrocrackers, distillation columns, dehydration and oligomerization reactors, are located on the GTL FPSO 10. As used herein, the term “product upgrading” refers to the production of finished end user products, such as diesel fuel, and/or intermediate products, such as lubricant basestocks.
In some embodiments of the invention as described in
Referring to
In some embodiments of the invention as described in
In preferred embodiments of the invention, the GTL FPSO 10 and the Oil/GTL FPSO 20 are configured to produce complete parcels, as that term is commonly used in the shipping field. That is, in preferred embodiments of invention, the storage capacity of the FPSO and the production capacity of oil production and/or gas to liquid production facilities are correlated so as to completely or nearly completely fill the storage capacity of the FPSO. Further, the storage tanks on the GTL FPSO are preferably sized to match as large a shipping parcel as possible. Shipping of product is a key financial consideration in any project that depends upon product reaching the final market in order to be profitable. In the hydrocarbon product market, shipping of products occurs in clean product tankers, typically. For instance, clean product tankers in the size range of 30,000 dead weight tonnes to 60,000 dead weight tonnes are very common. “Dead weight tonnes” or “dwt” refers to product, ship stores, ship fuel, and consumables on-board a ship and the dwt rating of a ship is often used to correlate the capacity in barrels of the ship. Typically, the staffing of a 30,000 dwt ship versus a 60,000 dwt ship are the same. Also, there is typically little difference in the speed at which a 30,000 dwt ship versus a 60,000 dwt ship can travel. There then remains two main variables for a product owner to reduce shipping cost; 1) reduce distance of travel and 2) increase the parcel size. Therefore, shipping parcels that are as large as possible tend to set the size of the storage at the production site. The integration of a GTL FPSO onto an existing crude oil tanker or onto a new hull the size of a crude oil tanker is driven by two variables which are i) the deck space required for the topside equipment required for processing the wellhead stream(s) and ii) the storage requirements of the produced liquids. In the case of the Oil/GTL FPSO, there are 4 types of products: 1) crude oil and/or condensate; 2) LPG; 3) Naphtha; and 4) middle distillate fuel. In another embodiment of the invention, base oil product is also stored. The storage for the products is dictated by the shipping parcel size and the relative production ratios of the products. For example, if an Oil/GTL FPSO is installed on an oil field and the associated gas contains a tremendous amount of LPG-type materials, then the optimum LPG storage requirement may decrease the crude oil storage component. Table 1 shows three common crude oil tanker hull sizes. In Table 1, the common shipping parcel sizes were applied and the resultant storage on the FPSO is shown. Note that LPG's are typically shipped by volume rather than weight. Currently available FPSOs have capacities ranging between about 200,000 barrels to about 2.4 million barrels. However, the invention contemplates FPSOs having larger and smaller storage capacities.
Some embodiments of the invention further provide for cooled storage of LPG products, the production of which is discussed in more detail below in connection with
While it is current practice to store LPG and LPG components at cooled temperatures so as to maintain such products liquefied, the invention contemplates the use of both or either temperature and pressure to maintain such products in a liquid state.
Although
In yet other embodiments of the invention, the movable platform may have a multi-vessel configuration. Multi-vessel configurations permit the use of any of the component vessels to be used for a single or multiple purposes. For example, in a two-vessel configuration, one of the two vessels may be used, for example, for oil production equipment, primary separation, and crude oil storage. The second vessel could be employed, for example, for synthesis gas and synthetic crude production along with storage of LPG components, i.e., butane and propane, LPG, end user products, and/or intermediate products. In such an embodiment, both vessels would preferably be FPSOs. In an alternative three vessel configuration, one vessel could function for all production activities, including for example, oil production, oil/gas separation, LPG recovery, synthesis gas and synthetic crude production. In such alternative structure, the other two vessels could be floating storage and offloading vessels (FSOs). In some such three vessel embodiments, the FSOs may be such so as to allow cold and or warmed storage. Yet other compartments of the FSOs could be temperature untreated. In some embodiments, end user and/or intermediate GTL products could be stored in appropriate tanks located on either of the FSO vessels. In alternative embodiments, one of the vessels may be dedicated to crude oil storage and one of the vessels dedicated to end user, intermediate, LPG, or LPG component storage.
Referring to
In another embodiment of the invention, the processes depicted in the foregoing embodiments are modularized such that a single processing plant may be alternately configured to process various components of a stranded gas stream as well as to alternately process such stream into various products and product slates. For example, a synthesis gas module may include a gas sweetening/liquids separation unit for removal of certain contaminants, such as sulfur, and separation of liquids from gaseous hydrocarbon components. Such synthesis gas module would generally also include an autothermal reactor for conversion of the gaseous hydrocarbons into synthesis gas. The synthesis gas module may also include one or more Fischer-Tropsch reactors. Alternatively, the Fischer-Tropsch reactor(s) may be combined with one or more Fischer-Tropsch product fractionators to form a Fischer-Tropsch module. One or more product modules may be connected to the synthesis gas module or Fischer-Tropsch module for upgrading the product of the Fischer-Tropsch synthesis into one or more higher value products. One example product module, a transportation fuel product module, would include dehydration or hydrotreatment units for the processing of an LFTL fraction as well as a hydrocracking unit for the processing of an HFTL fraction to obtain a synthetic transportation fuel. Other product modules include, for example, a hydrotreatment plus hydroisomerization unit and a dehydrogenation plus oligomerization units. In some embodiments of the invention, off-site or imported natural gas feed may be piped directly into a product unit.
Embodiments of the invention provide one or more of the following advantages:
The following examples illustrate embodiments of the invention but are not intended to limit the scope of the invention.
As discussed in detail above, Table 1 shows three possible arrangements of the invention using standard crude oil tanker hulls as a base hull for the Oil/FPSO and/or GTL FPSO.
Table 2 shows an alternate embodiment of the invention whereby a new or existing FPSO associated with crude oil production is connected to a GTL FPSO.
This application is a continuation-in-part application of U.S. Ser. No. 10/913,892, filed on Aug. 6, 2004 which claimed priority to U.S. provisional application Ser. No. 60/493,293, filed on Aug. 6, 2003, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60493293 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10913892 | Aug 2004 | US |
Child | 10994857 | Nov 2004 | US |