The prior art is generally directed to transporting a load by a flat bed delivery device, such as a truck or other device. The prior art loads are delivered via delivery devices that generally attempt to locate the loads onto or adjacent a site or other area prior to the load being unloaded from the transport vehicle. The load is then slid off the transporter or lifted off via a crane.
The present invention relates to a load. The load can include a perimeter with a first side and a second side, the second side extending substantially parallel to the first side and a plurality of supports extending from the first side to the second side, the supports allowing the load to withstand a lateral compression force suitable to lift the load.
The present invention also relates to a movable structure. The movable house can include a substantially complete full size non-roadable house and a foundation coupled to the substantially complete full size non-roadable house. The foundation can include a perimeter including a first side and a second side, the second side extending substantially parallel to the first side, and a plurality of supports extending from the first side to the second side, the supports allowing the foundation to withstand a lateral compression force suitable to lift the load.
The present invention also relates to a load. The load can includes a perimeter including a first side and a second side, the second side extending substantially parallel to the first side, a plurality of openings in the first and second sides, the plurality of openings on the first side aligned with a respective opening on the second side, a plurality of supports extending from the first side to the second side, the supports allowing the load to withstand a lateral compression suitable to lift the load, and a plurality of tendons extending through the plurality of openings in the first and second sides, the plurality of tendons allowing the load to be lifted and moved.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
Load 10 can be any suitable load to be moved. For example, the load can be a building, a building foundation, a truck container, a box, a carton, a pallet or any other suitable load or combination of loads. Building is defined as any completed, substantially completed or partially completed structure capable of permanent, semi-permanent or temporary occupancy or a house or other large rigid or semi-rigid payload. For example, a house can be a full sized custom home too large to be transported on public roads, a double wide or triple wide mobile home or any other structure desired. When configured as a building or substantially completed house, the load can include a foundation 22 coupled to the building, such that the building can be positioned in any suitable place that can accommodate such a foundation.
The load can have structures or beams 14 that help the load withstand a lateral force, such that the load 10 can be lifted using the compression/tension system and method described herein. The load can have a perimeter 23 that is formed in any shape desired. Both the perimeter 23 and beams 14 can be formed from concrete, metal, wood or any other suitable material or combination of materials. Furthermore, the perimeter and beams can include rebar and be integral for separate from each other. When separate, the beams can couple to the perimeter in any suitable manner, including friction or in any other temporary, permanent or semi-permanent manner. It is noted that the load does not need to have beams 14, and can have any suitable device or structure that would help the load withstand the necessary compression.
The load 10 can also have three (or any suitable number of) fixtures 21 running lengthwise and/or widthwise and/or in any suitable direction that support the tendons and accurately locate them relative to one another. These fixtures are built into the load and stay with it until the vehicle picks up the load. At that point, if desired, the fixtures can be removed from the load and reused. The fixtures can be removed at any other desired time or remain permanently with the load.
As shown in
As shown in
As shown in the
As shown in
As shown in
The tensioning devices are then actuated pulling bands 16 in the direction of arrow 48. The tensioning devices draw the chassis toward the load and compress the load between the chassis. Each chassis can have a high friction interface 50. The high friction interface can extend along the entire, substantially the entire or any portion of the chassis facing the load. For example the high friction interface can be a series of pads positioned along the chassis. Each of the tensioning devices each can produce about 150,000 pounds of tension; however the tensioning devices can provide any suitable amount of tension.
The tension created by the tensioning devices creates significant compression between the load and the two chassis (or the friction interface). This compression/friction allows the lifting mechanisms to lift and move the load. Once a sufficient compression force is created, the load can be lifted. Preferably, the compression force should be sufficient to lift the load and withstand any dynamic loads incurred during transport. For example, the compression force can be less than the weight of the load or any suitable amount.
The load can be lifted using the lifting mechanism 52 shown in
The actuators 76 preferably have a dynamic lifting capacity of at least 200,000 lb each with a 8-inch bore and a 38-inch stroke, but can have any suitable size, configuration and lifting capacity. The bogie travel in the vertical direction is preferably about six feet, but can be any suitable distance. In particular, the conventional servoactuators can be hydraulic actuators with integral position feedback and pressure transducers for load feedback that lift and support the payload.
In another embodiment, counterbalanced actuators can be utilized, which are smaller hydraulic actuators connected to a constant pressure source to lift and support a significant portion of the payload weight. That is, the large conventional servo actuators could be replaced by a smaller counterbalance actuator with a smaller servo actuator mechanically connected in parallel. The counterbalance actuator will support most of the payload's dead weight with the smaller servo actuator only required to actively position the payload
Additionally, two inter-connect cables between the two independent vehicles can be connected, one at the front of the building or load and one at the back, so that the vehicles can operate as one unit in the master-slave arrangement. Once in this configuration, the load can be lifted by the vehicle. However, it is noted that the vehicles can couple in any suitable manner (e.g., wirelessly) and/or at any suitable time and do not necessarily need to be electrically coupled in this manner (or at all) or approach and position themselves in this manner.
As shown in
When equipped with on board drivers, two operators, one in each cab, preferably control the vehicle's motion while communicating to each other over headsets; however it is not necessary for the operators to communicate in the manner, to communicate at all or for there even to be two operators; however the vehicle can be operated in any suitable manner. The vehicle can operate with any suitable number of operators and/or the operators can be positioned remotely from the vehicle and communicate with the vehicle from wired or wireless means or the vehicles can be computer controlled or automated. From each of the operators' points of view, each feels as if they are driving their own corner of the vehicle via a steering wheel or joystick on the console (not shown) or using other suitable device(s). The onboard computer system achieves such operation by generating steering and speed commands for all four bogies based on the input of the two joysticks. In this way, the operators can navigate fairly tight corners. The overall velocity is governed primarily by the master (front) operator. Both operators can maintain pressure on a dead-man enable switch (not shown) to enable motion, if desired.
In each mode of operation, the desired velocity vector can be calculated at each moment based on inputs from the operators and the control or computer control system. Each vehicle 32 and 34 can have a computer control that controls each vehicle when operating individually. In other words, when the vehicles are not engaged with each other, each operator is capable of individually steering a respective vehicle using the input controls and the computer control system. However, each control system is designed and configured to electrically couple or interface with the other computer control system, and thereby control the overall direction and speed of the vehicle 30. One system is designated as the dominate or the master system, either automatically or manually. The computer control system can include an onboard guidance and navigation systems. A Global Positioning System (GPS) can be used to facilitate calculation of the vehicle position in relation to the instant center, if desired. Additionally, the vehicle can use differential GPS with two or more receivers (preferably at least one on each transport vehicle 32 and 34) and a laser-based beacon detector for more precise handling and control; however, it is noted that one GPS, multiple GPSs and/or a laser-based beacon detector can be each be used alone or in combination with each other or not at all, if desired. Furthermore, the vehicle 10 and each individual vehicle 32 and 34 can be controlled and/or steered and/or directed in any suitable manner.
As noted above, differential steering can be used to advance and rotate the vehicle as required. To minimize stresses on the vehicle and payload, algorithms can be used to ensure the bogies steer in a kinematically consistent manner to avoid “fighting” one another. The preferred algorithm, called “countersteering”, transforms operator inputs from any two devices (steering wheel, throttle, joysticks) into 3 vehicle overall commands: longitudinal speed of a reference point on the vehicle, lateral speed of the same reference point on the vehicle, and vehicle yaw rate. The countersteering algorithm transforms the 2 operator inputs into 3 overall commands using an “instant center” calculation. The instant center may be on a line passing through the rear bogies (front wheel steer), on a line passing laterally through the midpoint of the vehicle (“four wheel steering”) or, more generally, on a lateral line located anywhere fore or aft of the center of the vehicle. However, it is noted that it is not necessary to steer the vehicle 10 in this manner and the vehicle can be merely steered by the operator or operators or computer control or other suitable means.
Preferably, the vehicle 30 has two speed ranges available to the master operator through a selection lever in the main cab: “Low” and “High”. Low speed is less restricted with respect to steering and maneuvering, but more restricted with regard to speed. While Low is selected, the steering limit hard stops are retracted allowing full steering range. The hard stops limit the articulation of the bogies. In High range or restricted movement mode, the full range of speeds is available to the operator, but the steering hard stops are engaged. This is a safety feature to guard against a failure of a propulsion motor when traveling at an elevated speed causing the bogie to spin too far resulting in damage to the vehicle or the load. However, the restricted movement mode can restrict the movement or any portion or system in of vehicle 10 in any suitable manner. It is noted that having two speed ranges is merely a preferred embodiment and the vehicle can have any number of speed ranges desired, including one or more than two.
With the load loaded, as stated above, one independent vehicle can be selected as the master and the other as the slave using a selection switch on each console or any in other suitable manner. While operating in “cruise mode”, the cab at the front is typically the master and the one at the rear is the slave; however, the vehicle can be operated in any suitable manner. When entering “cruise mode”, an onboard computer system can confirm that the two inter-connect cables are attached and that one cab is set as master and one is set as slave. The onboard computer system can also confirm that all load sensors are within nominal range and that the load is level and/or planar within tolerance as well as other suitable tests as may be required to verify that it is safe to change modes. At this point, the master cab operator can begin moving the vehicle.
Preferably, the load is maintained in a substantially planar and/or substantially level position throughout its conveyance to a predetermined position or location. Sensors or other suitable means monitor the angle of the load with respect to a gravity vector while other sensors or means measure the pitch angle induced on the bogies due to the slope of the ground. Based on this input, the onboard computer system causes the servoactuators 76 at each bogie to adjust accordingly to maintain planarity and level. In all modes, this planarity and leveling action should supersede the travel velocity in so far as the onboard computer system will automatically slow down the wheels to accommodate the leveling response time as necessary. If the system should ever reach the threshold where proper planarity and leveling cannot be maintained, the onboard computer system can command a reduced speed, or, if necessary, invoke an Automatic Stop, bringing forward travel to a halt at a suitable speed or deceleration.
When traversing a road surface 400 the roughness or other unevenness of the road can and generally does induce motion through the tire and lift 402, the actuator linkage 404, and actuator 106. Preferably information from each bogie and/or servoactuator 56 is sent to the vehicle controller 408. That is, the leveling system preferably receives data from sensors on each of the four hydraulic cylinders located on each bogie (for example, bogies 32 and 34 and actuator 56); however, the system can receive input from any number of suitable hydraulic actuator sensors or other means. The sensors on the actuators then send signals identifying their position and pressure feedback to both the controller card 410 and the vehicle controller 408. Additionally, at substantially the same time or on a continual basis, leveling sensors and/or planarity sensors (e.g., strain gages attached to the load floor structure or laser alignment devices) 412 send a signal to the vehicle controller. Preferably the leveling sensors and/or planarity sensors 112 send signals at specific intervals; however, the sensors can send signals on any desired schedule. The leveling sensors and/or planarity sensors 412 can include one device or any other number of suitable sensors.
The vehicle controller 408 processes the information from the actuator 106 and the leveling sensors and/or planarity sensors 412 and sends a commanded position to the controller card 410. For example, as stated above, the sensors and/or planarity sensors 412 can be any suitable means for monitoring the angle of the load with respect to a gravity vector and/or other means that measure the planarity of the vehicle chassis using at least three points directly under the slewing ring bearings or other suitable locations.
The controller card 410 then using the data or information received from the vehicle controller 408, the sensors 412 and/or the hydraulic cylinder(s) 406 relays or sends valve commands to the proportional valve(s) 414. The valve(s) in turn control the hydraulic cylinder(s) to adjust the height of the building or portion of the building overlying the specific hydraulic cylinder. Such a system enables the vehicle to continually monitor the position of the building and adjust as the vehicle transports the building to a specific site.
While this leveling and or planarity system is preferably used with a transport vehicle that is formed from two separately joined vehicles, this system can be used with any suitable transport vehicle, including a unitarily constructed vehicle or a vehicle formed from any number of other separately joined vehicles.
As shown in
The four-bar parallelogram linkage 68 and slewing ring structure 62 allow for final positioning of the load over the site 300 in “set mode”. Through coordinated and controlled movement of the slewing ring bearings, combined with controlled movement in a straight line of the bogies along the side edges of the site, the transport device 30 achieves sufficient latitudinal, longitudinal, and rotational movement over a small range to allow the operators to precisely align the load with its site. However, since the load can be placed on a graded site, it is not necessary to have the load placed in a precise manner, and the operators can be given sufficient leeway to place the load within a predetermined area.
The tensioning devices disengage from the bands and each vehicle 32 and 34 is individually driven (manually or automatically) away from the site. The bands can them be removed (or left with the load). If the bands are formed from a plurality of segments, the segments are disconnected and individually removed.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.