The present invention concerns movable, modular scaffold systems for building works, comprising at least one platform adjustable in length, height and width, said scaffold system being integrally displaceable without de-mounting and re-mounting of its sub-systems.
In a preferred embodiment of the invention the system comprises at least 5 sub-systems, a sixth sub-system being optional.
Presently the building activity, in particular the residential building enterprise knows a rather paradoxical situation in the sense that, especially in the big towns the buildings have taken a quite intensive characteristic, e.g., in form of skyscrapers with height from 30-40 up to 600 meters. In this frame, scaffoldings for the erection of big height buildings have been currently developed, said buildings being tamponed with the aid of large panels pre-fabricated outside erecting yard.
The scaffolding for such big buildings is of the industrial type and comprises vertical supports (mainly hollow tubes), which can be interconnected by means of horizontal bars. Plates which extend on a horizontal plane can be hooked into the bars to create an accessible working surface. Some prior Art documents are mentioned hereinafter to give an idea on said situation.
Spanish Patent Publication ES 2307797 is concerned with a demountable, multi-stage scaffolding comprising walk-on floor levels supported by vertical struts with railings fitted on through an adaptor attachable to rosette supports above floor at distance not restricted by the spacing between rosettes.
DE 102004060653 describes a framework having a guide system connected to a supporting system.
In the PCT Patent Application Published as WO2008/000654 a lifting platform is described which comprises a base (that can be set up on a ground and converted into a console), and a platform which can be lifted in relation to said base. The lifting system consists of two lateral columns.
EP 1398432 is concerned with formwork based on a support consisting of four tubular elements, and of an adaptor for said formwork.
Summarizing the panorama of the construction scaffolds can therefore be divided in a field of big buildings in which are needed big scaffoldings and a current field of small, middle buildings; in the first field of big scaffoldings there is an intensive search work to develop continuously improved systems, whereas in the small and middle building field the search of advantageous lifting platforms is rather limited. Indeed the minor costs of small-middle buildings do not allow the search and commercial expansion of sophisticated scaffoldings. There is also the other aspect that in the second field of the small-middle building there is a very high number of small contractors which have their own traditional building techniques wherein use is made of conventional scaffoldings.
Accordingly, at the best knowledge of the Applicant, it seems absent on the market an appropriate scaffold system which is modular, has a platform adjustable in the three directions X, Y, Z, is easily hand traversed without de-mountings and re-mountings, the system itself is safe, has not high costs, allows a sensitive reduction of the working times, and avoids loss or breaks of components.
First object of the present invention is to provide a compact, easy to set up, integrally displaceable, safe and highly performance scaffold system.
A second object is to provide a method to easily set-up, to adjust in height and length the platform, and to integrally displace said system.
The main features of the scaffold system according to the invention are recited in the claims, at the end of this description, said system substantially consisting of at least five sub-systems and optionally of a sixth sub-system.
The various features and advantages of the system according to the invention will more clearly appear from the following description of the preferred (illustrative but not limitative) embodiments represented in the accompanying drawings in which:
In the block scheme of
As it can be seem from the preferred embodiment shown in
According to a first feature of the invention, two pairs of overturned “glasses” 10-10′ project downwards from the lower (or proximal) faces of the longitudinal bars of the central frame T1, the number of said “glasses” 10-10′ is to be equal to the number of the uprights 11-11′, 12-12′ of the support sub-system S3.
Typically the proximal opening or mouth 9 of said glasses B-B′, B1-B1′ is to be slightly wider than those of the heads or tops 15 of said uprights 11-11′, 12-12′, of the support sub-system S3 so to facilitate the insertion of said mouths (associated to platform central element 1) within the terminal ends 15 of said uprights which are provided of holes 16 for the passage of bolts and/or stiffeners.
As it will be better seen in the following, a certain stiffening between these elements is needed as the height of the uprights 11-11′, 12-12′ is adjusted for instance by jackscrews M1 (motorized or not), winches or similar devices, which push upwards the shafts or pistons 18 to have each time the platform at a work optimal height according to the building structure under construction.
According to an other aspect of the invention the inner longitudinal bars 7, 7D and 7S of frames T1, T2, T3 are provided with the means for the coupling, through said hinges, bolts and rods and the like, with the extension elements 2 and 3 so to bring about also a good inter-system modularity, i.e. the union (with form constraint and, additionally, with stiffening of said coupling means like hinges, bolts, bars, rods) of one or more integral system SI, one SID at the right side of the platform 2 and one SIS to the left side of element 3.
In other words the integral (mono-body) SI of
This chain of single integrated systems £SID, SI, SIS or SI′, SI, SI″) according to the invention is not shown as it is per se strongly intuitive. By returning to the single system of
In said figures L1 and L2 indicate the lever of the hydraulic jacks M1 and M2, whereas 64-64′ indicate the pistons (shafts or bars) to hoist S5 and to rotate the twirling (pirouetting) wheels. The telescopic run of the glasses 10-10′ on the superior uprights 11-11′, 12-12′ to finely adjust the platform height is generally rather short and at most equal to the depth of same glasses. On the contrary the telescopic stroke of the inferior uprights 11-11′, 12-12′ (less wide) is longer as it is depending on the hoisting from ground and insertion of the wheels RP.
The poles PUD-PUD′, PUS-PUS′ which bear the outer or intermediate ends of the extension elements 2 and 3 of the platform PIA in extended configuration, are provided with ribs to insert the bolts 6′, with bearing plates to ground 51 and with flywheels V-V′ to adjust the extension, i.e. to adapt them to the different platform height over the ground. Similarly to the uprights 11-11′, 12-12′ and 14-14′, said poles are also constituted of two telescopically coupled bodies 80-80′, 81-81′.
As shown in
In these last figures have been used the same references of
The preferred method to embody the system according to the present invention comprises at least the steps wherein:
For scruple of illustrative clarity and simplicity, the invention has been described with particular reference to the embodiments shown in the accompanying drawings; said invention cannot however be considered as restricted to said embodiments but it is to be intended as comprising all changes, substitutions, additions and the like which if being in the hand reach of the field mean technical expert, fall naturally within the scope of the following claims.
This is a continuation-in-part of International Application No. PCT/EP2009/002280, filed Mar. 27, 2009, the disclosure of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/002280 | Mar 2009 | US |
Child | 13240690 | US |