Embodiments of the present invention are directed to header assemblies for movable partitions, movable partition assemblies including header assemblies, and methods of forming and installing movable partitions and header assemblies.
Movable partitions are utilized in numerous situations and environments for a variety of purposes. Such partitions may include, for example, a movable partition comprising foldable or collapsible doors configured to enclose or subdivide a room or other area. Often such partitions may be utilized simply for purposes of versatility in being able to subdivide a single large room into multiple smaller rooms. The subdivision of a larger area may be desired, for example, to accommodate multiple groups or meetings simultaneously. In other applications, such partitions may be utilized for noise control depending, for example, on the activities taking place in a given room or portion thereof.
Movable partitions may also be used to provide a security barrier, a fire barrier, or both a security and a fire barrier. In such a case, the partition barrier may be configured to automatically close upon the occurrence of a predetermined event such as the actuation of an associated alarm. For example, one or more accordion or similar folding-type partitions may be used as a security barrier, a fire barrier, or both a security and a fire barrier wherein each partition is formed with a plurality of panels connected to one another with hinges. The hinged connection of the panels allows the partition to fold and collapse into a compact unit for purposes of storage when not deployed. The partition may be stored in a pocket formed in the wall of a building when in a retracted or folded state. When the partition is deployed to subdivide a single large room into multiple smaller rooms, secure an area during a fire, or for any other specified reason, the partition may be extended along an overhead track, which is often located above the door in a header assembly, until the partition extends a desired distance across the room.
In some applications, the header assembly may provide structural support for the overhead track, the movable partition, and a motor. In fire barrier applications, it may be necessary that the movable partition and the header assembly of the partition provide a fire barrier. Generally, a fire barrier system or assembly provides a barrier to fire, smoke, and heat. Thus, a fire barrier may retard or resist the deleterious effects of fire, smoke, and heat for a certain period of time. A number of standardized tests that test the effectiveness of fire barrier assemblies have been developed for use in the building industry. These are published, for example, in the Uniform Building Code (UBC), the International Building Code (IBC), and by the National Fire Protection Association (NFPA), UNDERWRITERS LABORATORIES® (UL), and the American Society for Testing and Materials (ASTM), among others. Various agencies test fire barriers using these standardized tests, and assign ratings to fire barriers that indicate their effectiveness at slowing the progress of a fire. Barrier testing agencies include Intertek Testing Services, UNDERWRITERS LABORATORIES®, Chiltern International Fire, Ltd., and Warrington Fire Research, among others. Ratings of fire barrier assemblies are generally provided in minutes, and typically vary from twenty minutes to 180 minutes. Examples of fire barrier assembly standards and testing methods can be found in UNDERWRITERS LABORATORIES® UL 10B document titled, “UL Standard for Safety Fire Tests of Door Assemblies.”
In order to provide a fire barrier, the header assembly along with the movable partition and surrounding walls must also provide some level of fire resistance in addition to the movable partition. Thus, when the partition is employed as a fire barrier, it is known to attach the movable partition to a header structure that is configured to provide resistance to fire.
In accordance with some embodiments of the present invention, a header assembly for a movable partition may include an overhead track and a metal header pan at least partially abutting a portion of the overhead track. At least one of the overhead track and the metal header pan is configured to form a fire-resistant barrier extending from a wall of an adjoining structure to an opposing wall of the adjoining structure. At least one fastener element is configured to attach the overhead track to the adjoining structure.
Additionally, the header assembly may include at least one retainer clip configured to attach to at least one wall of the adjoining structure. Further, the metal header pan may extend laterally from at least a portion of the overhead track to a portion of the at least one retainer clip.
In additional embodiments, the present invention includes a movable partition system including a header assembly having a longitudinal axis. The header assembly includes at least one elongated first structural element extending in a direction substantially parallel to the longitudinal axis of the header assembly, at least one fastener element configured to couple the at least one structural element to a portion of a header structure, an elongated overhead track extending in a direction substantially parallel to the longitudinal axis of the header assembly and coupled to the at least one first structural element, and an elongated metal header pan at least partially abutting a portion of the overhead track. The metal header pan extends in a first direction substantially parallel to the longitudinal axis of the header assembly and is configured to extend in a second direction substantially perpendicular to the longitudinal axis of the header assembly toward at least a portion of at least one wall of the header structure. Further, the movable partition assembly includes a pleated structure having a plurality of hingedly coupled panels suspending from the overhead track.
In yet additional embodiments, the present invention includes a method of forming a fire-resistant header assembly for a movable partition. The method includes positioning an overhead track within a longitudinally extending space between a first wall and a second wall. The metal header pan is positioned proximate to the overhead track and is configured to extend in a lateral direction across the longitudinally extending space between the first wall and the second wall. Further, the metal header pan may at least substantially occlude a longitudinal section of the space between the first wall and the second wall.
In yet additional embodiments, the present invention includes a method of installing a movable partition. The method includes securing an overhead track to an overhead support member, securing at least one retainer clip to the at least one wall of the adjoining structure, extending a header pan from the overhead track to the at least one retainer clip, and suspending a movable partition from the overhead track.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention may be more readily ascertained from the description of embodiments of the invention when read in conjunction with the accompanying drawings, in which:
Illustrations presented herein are not meant to be actual views of any particular partition or header assembly, but are merely idealized representations which are employed to describe embodiments of the present invention. Additionally, elements common between figures may retain the same numerical designation.
Referring to
To deploy the movable partition 102 to an extended position, the movable partition 102 is moved along the overhead track 120. A leading edge of the movable partition 102 may include a lead post 124 configured to engage with a door jamb or another post, which may be provided in a wall 114B of a building to which the movable partition 102 may extend in an extended state. While the embodiment of the movable partition 102 shown and described with reference to
The system 100 also includes a header structure 126. The header structure 126 includes a structural support member and a header assembly, as discussed in further detail below. The movable partition 102 may be suspended from and supported by the header structure 126. In other embodiments, the movable partition 102 may be supported by the floor below the movable partition 102, and the header structure 126 may simply serve as a guide for the movable partition 102. While the embodiment of the header structure 126 shown and described with reference to
Referring to
In some embodiments, the header assembly 110 for a movable partition 102 (
The overhead track 120 may be attached to an overhead support member 118 by fastener elements such as rods 116. One end of each of the rods 116 may be attached to the overhead support member 118. Each rod 116 may comprise a threaded rod that extends through the overhead support member 118, and a nut 137 may be threaded onto the end of the overhead support member 118 on a side thereof opposite the overhead track 120 to retain the rod 116 in position relative to the overhead support member 118. The overhead support member 118 may be, for example, a wood or metal beam, a truss structure, floor joists, etc.
The overhead track 120 is coupled to (directly or indirectly) and suspended from the rods 116. As shown in
In some embodiments, the rods 116 may be threaded and may be anchored to an overhead support member 118. The rods 116 extend from the overhead support member 118 to the structural elements 136 and may be coupled thereto. The rods 116 may be coupled or fastened to the overhead support member 118 by any suitable manner such as, for example, using conventional nuts. In some embodiments, the rods 116 may be located at set distances along the overhead track 120 to attach the structural elements 136 to the overhead support member 118. For example, the rods 116 may be spaced at set intervals along the overhead track 120, each interval being spaced a set distance such as 18 inches (45.72 centimeters) apart. Further, in some embodiments, when the movable partition 102 is retracted (i.e., opened), the weight of the movable partition 102 will be concentrated in the area of the overhead track 120 located above the refracted movable partition 102 (e.g., the section of the overhead track 120 located in the pocket 108). Therefore, the rods 116 may be spaced at shorter intervals such as 12 inches (30.48 centimeters) in the area where the movable partition 102 is stored in a refracted state. It is noted that while the structural elements 136 of
As shown in
The header assembly 110 may include a barrier member that extends across the recess 112 between the first wall 122 and the second wall 123. The barrier member may at least substantially seal off the header recess 112, if present. In some embodiments, the barrier member may comprise a fire-resistant barrier member. As an example, the barrier member may comprise a metal header pan 152. The header pan 152 may comprise one or more metal members (e.g., sheet metal members) that together form a metal pan that extends between the first wall 122 and the second wall 123 over the movable partition 102 (
In some embodiments, the header pan 152 may be formed to provide a channel 154 located, for example, in a central portion of the header pan 152, such that the header pan 152 extends over or at least partially around the overhead track 120. The overhead track 120 may be at least partially received within the channel 154 formed by the header pan 152. While the header pan 152 shown in
In some embodiments, the header assembly 110 may further include a first retainer clip 146 attached to the first wall 122, and a second retainer clip 147 that is attached to the second wall 123. While the current embodiment shown and described in
Thus described, a structural barrier (which may comprise a fire barrier) is formed by the various components of the header assembly 110.
The header pan 152 may extend longitudinally along at least a portion of the overhead track 120. Further, the header pan 152 may also extend in a substantially lateral direction from at least a portion of the overhead track 120 to the first and second retainer clips 146, 147. By way of example and not limitation, the header assembly 110 may have a longitudinal axis L110. The header pan 152 may extend longitudinally along a portion of the overhead track 120 along an axis substantially parallel to the longitudinal axis L110. Referring now to
In embodiments where the movable partition 102 is employed as a fire barrier, the header pan 152, the overhead track 120, and the first and second retainer clips 146, 147 may comprise a fire-resistant material such as steel, composite materials, or any material capable of exhibiting fire-resistant qualities over a set period of time or any material treated with a fire retardant coating.
Referring now to
Referring again to
As shown in
As the various components of the header assembly 110 may be formed from a fire-resistant material such as steel, embodiments of header assemblies 110 of the present invention may be substantially free of gypsum board and other gypsum board-like materials typically used in fire rated walls and barriers.
Referring again to
Referring still to
In view of the above, embodiments of the present invention may be particularly useful in providing a header assembly for a movable partition. Use of a simplified barrier such as the header pan and, in some applications, the retaining clips to provide a header assembly may allow for a simplified installation of a movable partition. Use of the cross brace may allow the header assembly to be aligned and secured within a header structure. The use of the header assembly allows for parts of the movable partition system to be pre-prepared before installation and reduces the need to customize parts and materials such as layers of plywood and gypsum board to fit each individual installation. Moreover, in applications where the movable partition is employed as a fire barrier, the header assembly provides an adaptable fire-resistant barrier.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application is a divisional of U.S. patent application Ser. No. 12/477,056, filed Jun. 2, 2009, now U.S. Pat. 8,051,616, issued Nov. 8, 2011, the disclosure of which is hereby incorporated herein by this reference in its entirety. The subject matter of this application is also related to U.S. patent aplication Ser. No. 13/249,665, filed. Sep. 30. 2011, now U.S. Pat. No. 8,322,095, issued Dec. 4, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2909802 | Gang et al. | Oct 1959 | A |
2945535 | Haws | Jul 1960 | A |
3529651 | Bender | Sep 1970 | A |
3685235 | Lang | Aug 1972 | A |
3755968 | Williams | Sep 1973 | A |
4133364 | Smart | Jan 1979 | A |
4281481 | Wendt | Aug 1981 | A |
4674248 | Hall | Jun 1987 | A |
5167575 | MacDonald | Dec 1992 | A |
5411072 | Starck et al. | May 1995 | A |
5481834 | Kowalczyk et al. | Jan 1996 | A |
6615894 | McKeon | Sep 2003 | B1 |
7478663 | Goodman et al. | Jan 2009 | B2 |
7513293 | Goodman et al. | Apr 2009 | B2 |
7740046 | Goodman et al. | Jun 2010 | B2 |
7845385 | Goodman et al. | Dec 2010 | B2 |
7845386 | Coleman et al. | Dec 2010 | B2 |
7854248 | Coleman et al. | Dec 2010 | B2 |
8051616 | George | Nov 2011 | B2 |
20080023152 | Goodman et al. | Jan 2008 | A1 |
20080105387 | Coleman et al. | May 2008 | A1 |
20080209827 | Webb | Sep 2008 | A1 |
20080264578 | Goodman et al. | Oct 2008 | A1 |
20090120595 | Goodman et al. | May 2009 | A1 |
20110024061 | Bell et al. | Feb 2011 | A1 |
20110093095 | Goodman et al. | Apr 2011 | A1 |
Entry |
---|
Office Action from co-pending U.S. Appl. No. 13/249,665, dated Mar. 19, 2012. |
Number | Date | Country | |
---|---|---|---|
20120018101 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12477056 | Jun 2009 | US |
Child | 13249699 | US |