The present invention relates to a movable portion transmission system using wireless power transmission that can implement, in a noncontact manner, a function of transmitting electric power by using a slip ring device that requires a mechanical contact.
Conventionally, a slip ring device having a mechanical contact is used when a power source line is connected to load equipment or the like via a structural rotary member.
This slip ring device is comprised of a ring-shaped slip ring to which a transmission power supply is connected and which is arranged on the outer surface of the rotary member via an insulator, and a brush to which a reception power supply is connected and which is in sliding contact with to the outer surface of a slip ring. Load equipment or the like is connected to the reception power supply. With this configuration, the slip ring and the brush are electrically connected to each other, and the electric power can be transmitted from the transmission power supply to the reception power supply. In addition, by providing multiple pairs each having the slip ring and the brush in that slip ring device, multiplexing of a plurality of electric power can be carried out.
Patent reference 1: Japanese Patent No. 5449502
However, in the slip ring device, degradation due to wear occurs in the contact, which is a mechanical contact, between the slip ring and the brush. Therefore, a problem is that the life of the power transmission system is limited by the degradation due to wear.
On the other hand, as a technique which replaces that technique, a transmission system using non-contact wireless power transmission is known (for example, refer to patent reference 1). In the transmission system disclosed by this patent reference 1, as shown in, for example,
However, in the transmission system disclosed by the patent reference 1, each transmission and reception antennas is configured using spacers 102 and 104 each having predetermined magnetic permeability, which are used for controlling the magnetic flux. Therefore, a problem is that the coil shape of each transmission and reception antennas is limited to a helical shape or the like from the viewpoint of manufacturing. Another problem is that a power loss occurs due to an eddy current in each of the spacers 102 and 104 each having magnetic permeability, and the transmission system increases in mass, volume and cost because of the spacers 102 and 104.
The present invention is made in order to solve the above-mentioned problems, and it is therefore an object of the present invention to provide a movable portion transmission system using wireless power transmission that can implement, in a non-contact manner, a function of transmitting electric power by using a slip ring device and can achieve reduction in the electric power loss (high efficiency), and can achieve downsizing, a weight reduction and a cost reduction implement.
In accordance with the present invention, there is provided a movable portion transmission system using wireless power transmission which is performed via a rotary member, the movable portion transmission system including: a primary transmission power supply to supply electric power; a transmitter and receiver configured with a transmission antenna to perform wireless transmission of the electric power from the primary transmission power supply, and a reception antenna to receive the electric power from the transmission antenna with which the reception antenna pairs up; a transmission power supply circuit to establish a resonance condition of the transmission antenna with which the transmission power supply circuit pairs up; and a reception power supply circuit to establish a resonance condition of the reception antenna with which the reception power supply circuit pairs up, in which the transmission antenna is comprised of a transmission side coil in a spiral shape which is arranged while being centered at an axial center of the rotary member, and the reception antenna is comprised of a reception side coil in a spiral shape which is arranged with a gap therefrom to the transmission side coil while being centered at the axial center of the rotary member.
Because the movable portion transmission system according to the present invention is configured as above, the movable portion transmission system can implement, in a non-contact manner, a function of transmitting the electric power by using a slip ring device and can achieve a reduction in the electric power loss (high efficiency), and can achieve downsizing, a weight reduction and a cost reduction.
Hereafter, the preferred embodiments of the present invention will be explained in detail with reference to the drawings.
The movable portion transmission system using wireless power transmission is used in the case of connecting a power source line to load equipment or the like (not shown) via a structural rotary member (not shown), and is a device that performs wireless transmission of electric power including an electric signal. In
This movable portion transmission system using wireless power transmission is comprised of a primary transmission power supply 1, a transmission power supply circuit 2, a transmitter and receiver 3 and a reception power supply circuit 4, as shown in
The primary transmission power supply 1 supplies electric power to each transmission antenna 5 via the corresponding transmission power supply circuit 2.
Each transmission power supply circuit 2 is arranged between the primary transmission power supply 1 and the corresponding transmission antenna 5, and establishes the resonance condition of the transmission antenna 5, with which the transmission power supply circuit pairs up, by using resonance impedance control.
Each transmission antenna 5 performs wireless transmission of the electric power supplied thereto from the primary transmission power supply 1 to the corresponding reception antenna 6 via the transmission power supply circuit 2 with which the transmission antenna pairs up. The details of the configuration of that transmission antenna 5 will be described later.
Each reception antenna 6 receives the electric power from the transmission antenna 5 with which the reception antenna pairs up. The electric power received by this reception antenna 6 is supplied to the load equipment or the like not shown via the corresponding reception power supply 4. The details of the configuration of this reception antenna 6 will be described later.
Each reception circuit 4 is arranged between the corresponding reception antenna 6 and the load equipment or the like, and establishes the resonance condition of the reception antenna 6 with which the reception circuit pairs up by using input impedance control.
A wireless transmission method which each transmitter and receiver 3 uses is not limited particularly, and can be any one of a method in accordance with magnetic-field resonance, a method in accordance with electric-field resonance, and a method in accordance with electromagnetic induction.
Next, the configuration of each transmitter and receiver 3 will be explained while referring to
In each transmitter and receiver 3, the transmission antenna 5 and the reception antenna 6 which pair up with each other are arranged with a gap between them, as shown in
This transmission antenna 5 is comprised of a transmission side coil 7 in a spiral shape which is arranged while being centered at the axial center of the rotary member (this configuration also includes a configuration in which the transmission side coil is centered substantially at the axial center), as shown in
In the example shown in
Further, in the case in which the plurality of sets of the transmission antenna 5 and the reception antenna 6 are arranged in parallel along the direction of the axial center of the rotary member, the power transmission efficiency characteristics change due to the interval G between the sets. More specifically, the power transmission efficiency characteristics are improved with increase in the interval G.
Here, the interval G between the plurality of sets is set in consideration of the phase of the magnetic field generated from each transmission antenna 5 in such a way that the mutual interference between the plurality of sets is reduced. For example, in the example of
As mentioned above, because the movable portion transmission system according to this Embodiment 1 is configured in such a way as to include the transmission antenna 5 comprised of the transmission side coil 7 in a spiral shape which is arranged while being centered at the axial center of the rotary member, and the reception antenna 6 comprised of the reception side coil 8 in a spiral shape which is arranged with a gap therefrom to the transmission side coil 7 while being centered at the axial center of the rotary member, the function of transmitting the electric power by using the slip ring device can be implemented in a non-contact manner. As a result, the life limitation resulting from the degradation due to wear in the mechanical contact is eliminated, and an extension of the life of the device can be achieved. Further, for the wireless power transmission, a contact failure due to contamination, leakage of electricity due to condensation, etc. can be prevented, and the reliability of the device is improved. In addition, because a spark or the like, which may conventionally occur due to wear in the mechanical contact, is prevented from occurring, the movable portion transmission system can be caused to operate in an inflammable gas or fluid.
Further, because the spacers 102 and 104 each having predetermined magnetic permeability for controlling the magnetic flux are not used, unlike in the case of using a conventional technology, no limitation in terms of manufacturing is imposed on the coil shapes of the transmission antennas 5 and the reception antennas 6. In addition, the power loss, which is conventionally caused by the eddy current in each of the spacers 102 and 104, does not occur, and the increase in the mass, the volume and the cost, which is conventionally due to the spacers 102 and 104, is eliminated. Therefore, a reduction in the electric power loss (high efficiency) over the conventional configuration can be achieved, and downsizing, a weight reduction and a cost reduction can be achieved.
Further, in the case of the multiple-set configuration, because the plurality of sets are arranged at intervals of G in consideration of the phase of the magnetic field generated from each transmission antenna 5 in such a way that the mutual interference between the plurality of sets is reduced, the multiplex transmission based on the high-efficiency wireless power transmission can be implemented.
The case in which the transmission antennas 5 and the reception antennas 6 are comprised of single coils 7 and 8, respectively is shown in the above-mentioned embodiment. However, this embodiment is not limited to this example. Each of the coils 7 and 8 can consist of a coil for electric supply and a coil for resonance, or can consist of two or more coils.
Further, in the above-mentioned embodiment, the electric power which the primary transmission power supply 1 and the transmission power supply circuit 2 supply to the transmission antenna 5 can have a frequency which is the same or different for each of the plurality of sets. When the frequency differs among the plurality of sets, the resonance condition of the transmission antenna 5 and the reception antenna 6 also differs among the plurality of sets.
Further, in each reception antenna 6, the resonance condition changes according to the gap therefrom to the transmission antenna 5 with which the reception antenna pairs, the load current, the load impedance, etc. Therefore, a function of causing the resonance condition to be established in the reception antenna 6 to be variable in accordance with a change of these transmission states can be added to each reception power supply circuit 4. Further, similarly, a function of causing the resonance condition of the transmission antenna 5 to be variable can be added to each transmission power supply circuit 2. In addition, functions of causing the resonance conditions of the antennas 5 and 6 to be variable can be added to both the circuits 2 and 4, respectively.
Further, in the example shown in
Further, while the invention has been described in its preferred embodiment, it is to be understood that various changes can be made in an arbitrary component according to the embodiment, and an arbitrary component according to the embodiment can be omitted within the scope of the invention.
The movable portion transmission system using wireless power transmission according to the present invention can implement, in a non-contact manner, the function of transmitting electric power by using a slip ring device, can achieve a reduction in the electric power loss (high efficiency) and can achieve downsizing, a weight reduction and a cost reduction. The movable portion transmission system is therefore suitable for use as a movable portion transmission system using wireless power transmission or the like that can implement, in a non-contact manner, the function of transmitting electric power by using a slip ring device which requires a mechanical contact.
1 primary transmission power supply, 2, 2a to 2c transmission power supply circuit, 3 transmitter and receiver, 4, 4a to 4c reception power supply circuit, 5, 5a to 5c transmission antenna, 6, 6a to 6c reception antenna, 7, 7a to 7c transmission side coil, and 8, 8a to 8c reception side coil.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/062720 | 5/13/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/173890 | 11/19/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5521444 | Foreman | May 1996 | A |
20070024575 | Makuth | Feb 2007 | A1 |
20100033021 | Bennett | Feb 2010 | A1 |
20120007442 | Rhodes | Jan 2012 | A1 |
20130009462 | Amano et al. | Jan 2013 | A1 |
20150280446 | Akuzawa et al. | Oct 2015 | A1 |
20150280447 | Akuzawa et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
63-124735 | May 1988 | JP |
4-133808 | May 1992 | JP |
6-315237 | Nov 1994 | JP |
2007-208201 | Aug 2007 | JP |
2011-019293 | Jan 2011 | JP |
2011-166885 | Aug 2011 | JP |
5449502 | Mar 2014 | JP |
2011118404 | Sep 2011 | WO |
2013114576 | Aug 2013 | WO |
2014069093 | May 2014 | WO |
Entry |
---|
International Search Report dated Jun. 10, 2014 in Application No. PCT/JP2014/062720, Filed on May 13, 2014. |
Extended European Search Report dated Nov. 14, 2017 in European Patent Application No. 14891904.6. |
Japanese Office Action dated Aug. 7, 2018 in Japanese Patent Application No. 2017-201079 (with unedited computer generated English translation), 11 pages. |
Japanese Office Action dated Oct. 2, 2018 in Japanese Patent Application No. 2016-519019 (with English translation), 9 pages. |
Number | Date | Country | |
---|---|---|---|
20170047787 A1 | Feb 2017 | US |