Office space can be relatively expensive, not only due to the basic costs of the location and size of the office space, but also due to any construction needed to configure the office space in a particular way. For example, an organization might purchase or rent a large open space in an office complex, and then subdivide or partition the open space into various offices, conference rooms, or cubicles, depending on the organization's needs and size constraints. In general, the organization will typically subdivide the office space with virtually any type of material, such as standard dry wall and frame materials, as well as any usage of glass, resin, or even more modular, cubicle-style materials. The choice of these materials generally reflects decisions having to do with aesthetic considerations, relative permanence of the subdivisions, and, ultimately, costs.
In general, organizations opting for temporary partitions, such as cubicle-style, or modular partitions, tend to sacrifice aesthetics in favor of rapid configurability or reuse/rearrangement and lower costs. By contrasts, organizations that favor more aesthetically pleasing partitions, tend to sacrifice the ability to rearrange office space partitions, and typically pay much higher costs from start to finish. This tends to be the case for a number of different reasons. For example, the more aesthetically pleasing materials, such as glass or resin panels, tend to be more expensive than modular components, and further tend to require more expensive, permanent mountings. This is at least partly since these types of panel materials tend to be much heavier and more fragile than other types of materials used in a partition.
Accordingly, with permanent partitions, the manufacturer will typically build customized wood and dry wall frames that are tailored to the size of each glass or resin panel, where the frames securely hold the glass or resin panel in place. In other cases, the manufacturer might build a customized frame around each particular panel, and secure each frame (that includes the panel) to a floor, wall, and/or ceiling support structure. In any event, these more permanent structures allow a manufacturer to position several panels in the same permanent mounting structure or partition. In addition, and in the event the manufacturer frames two different panels side-by-side together, the manufacturer may also apply a relatively permanent seal between the two different panes, such as by applying a silicone caulking therein. One can appreciate that these types of approaches to positioning and securing a panel as a partition can be time consuming, and can be expensive.
Furthermore, the relative permanence of the mounting materials can make it fairly difficult to change the configuration of the office space, or can otherwise limit the type of configuration outlay. For example, removing a set of frame panels that are encased in a wood frame typically involves destroying the wood frame, and/or cleaning the silicone caulking off of the panels, and then rebuilding the wood frame for another area where the panels may be positioned again. Thus, removing the panels and configurations often involves acts that cause many or all of the partition materials to be unusable to greater or lesser degrees. In particular, reconfiguration of the office partitions will result in discarding (or spending significant time restoring) many of the components used in the partitions themselves.
By contrast, and as previously mentioned, the more-light weight, cubicle-style walls can be much easier to assemble, more reusable, and much less expensive. For example, with modular components, the manufacturer can simply position the partitions in a particular pattern, and temporarily secure the partitions to a wall, floor, or ceiling structures in some cases such as with fasteners. In some cases, the manufacturer may also use rollers at the bottom of the modular subdividing components to roll the subdividing components in and out of a particular subdivision position. Unfortunately, these more modular, reusable materials, also tend to be less aesthetically pleasing, and often do not provide many of the privacy benefits generally found with more permanent partition structures.
In many cases, therefore, an organization may desire to implement some combination of permanent and semi-permanent/temporary (or modular) materials. In some cases, the organization may even desire to incorporate the benefits of a semi-permanent or modular subdivision with the heavier, and ultimately more aesthetically pleasing, glass or resin panel-type materials. As previously mentioned, however, such heavier-weight materials typically need either a complete frame around the materials on each side, or some sort of permanent framing system about a set of materials in order to secure the weight thereof in a particular position.
Unfortunately, temporary frame components tend to be highly visible, such as by requiring a modular frame on all sides of the material to hold the panel in place. This heightens visibility of the frame components, which can hinder the otherwise-intended aesthetic (e.g., transparency or translucence) for the panel, and can create obstructions where a continuous or design look may be desired. For example, a completely framed panel typically limits a manufacturer to angled alignments, and can make curved alignments difficult or impossible.
Thus, although modular configurations can provide for more rapid installation and reconfiguration of walls/partitions, the size, arrangement, and aesthetics of such partitions tends to be fairly limited, particularly compared with conventional permanent mounting solutions. These limitations of modular configurations can be further compounded by the size and characteristics of each interior office space, including the size of entry doors or elevators, or the handling weight of the divider wall, and so forth. That is, although permanent partitions can be assembled and created with a variety of different finishes to appear as a continuous unit of almost any dimension, modular partitions tend to resemble a compilation of segments that that are no larger than the door or elevator dimension through which they were received.
Accordingly, there are a number of difficulties associated with dividing interior office space with high quality, aesthetically pleasing materials, particularly in light of cost considerations, and where the need for reconfiguration and reuse of such components may be desired.
Implementations of the present invention provide systems, apparatus, and methods for assembling and re-assembling partitions of an interior space using high grade partitioning components. In particular, implementations of the present invention comprise a number of different frame components that can hold a wide range (weight, style, size) of panel materials, such as high-end glass or resin panel materials, in a stable formation against a given support structure, but without requiring permanent mounting solutions. The partitioning components used in accordance with the present invention can provide a permanent-style partition (e.g., sets of continuous, and/or curved panel alignments) while, at the same time, being capable of reuse and realignment as needed without destruction.
For example, a system for partitioning an interior space on a semi-permanent or temporary basis with a plurality of different panels can include a first horizontal frame component configured to be removably mounted to a support surface. The first horizontal frame component includes a slot therein for receiving an edge of at least one panel. The system can also include a first vertical frame component mounted to the first horizontal frame component on a lower end. The first vertical frame component also includes a slot therein for receiving a side of an edge of at least one panel. In addition, the system can include a second horizontal frame component mounted to an opposing upper end of the first vertical frame component. The second horizontal frame also includes a slot therein for receiving an edge of at least one panel.
Furthermore, the system can include a gasket positioned in each of the slots in each of the horizontal and vertical frame components. In general, the slots of the first and second horizontal frame component, and of the first vertical frame component, are configured in size and shape to removably receive any of the at least one panels and/or a plurality of different panels.
In addition, a method of partitioning an interior space on-site with reusable modular components configured to removably hold a plurality of heavy-weight panels in a stable conformation that is permanent or temporary can include a step for creating preliminary assembly for removably receiving a plurality of different panels. This step can include attaching a first horizontal frame component to a support surface, where the first horizontal frame component has a slot. The step for creating the preliminary assembly can also include attaching an end of a first vertical frame component to an end of the first horizontal frame component, where the first vertical frame component has a slot.
Furthermore, In addition, the step for creating the preliminary assembly can include attaching an end of a second horizontal frame component to an opposing end of the first vertical frame component. As with the other two components, the second horizontal frame component also has a slot. The method can also involve sliding a plurality of different panels within one or more corresponding slots corresponding to the frame components of the preliminary assembly. In addition, the method can involve attaching opposing ends of a second vertical frame component to corresponding opposing ends of the first and second horizontal frame components.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the invention. The features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Implementations of the present invention relate generally to systems, apparatus, and methods for assembling and re-assembling partitions of an interior space using high grade partitioning components. In particular, implementations of the present invention comprise a number of different frame components that can hold a wide range (weight, style, size) of panel materials, such as high-end glass or resin panel materials, in a stable formation against a given support structure, but without requiring permanent mounting solutions. The partitioning components used in accordance with the present invention can provide a permanent-style partition (e.g., sets of continuous, and/or curved panel alignments) while, at the same time, being capable of reuse and realignment as needed without destruction.
Accordingly, one will appreciate that implementations of the present invention can be particularly suited to walls or partitions used in an office interior environment where both aesthetics and low cost are desired. In addition, and as will be appreciated more fully herein, implementations of the present invention provide design freedom. For example, the components in accordance with implementations of the present invention can be easily manufactured off-site, and subsequently assembled into virtually any permanent-style configuration on-site. In particular, components in accordance with the present invention provide for the assembly of large, continuous or semi-continuous runs of panels used as partitions, which would otherwise need permanent framing apparatus.
In addition, the components in accordance of the present invention are low-profile with respect to the panels (or panes) they are holding, such that their visibility with respect to the panels is minimize. In particular, the use of any intervening, non-structural elements located between adjacent panels can be significantly minimized. As a result, stable and reconfigurable partition alignments can be provided in almost any angle or curvature, and in a manner that highlights, rather than hinders, the aesthetics of the panel used in the partition.
For ease of reference, the panes, sheets, or panels used in the movable walls, are referred to generically herein as “panels” and panel or partition assemblies. Partitions that are assembled on-site using structural supports and panels can also be generally referred to as “stick-built” panels, while the components that generally provide the structure about the panels in the partition are generally referred to herein as “frame components.” Thus, a partition (i.e., “stick built” wall or partition) will be understood herein to include at least one lower or bottom horizontal frame component, at least one upper or top horizontal frame component, and, at least initially, a single vertical frame component, wherein a manufacturer can insert a panel into the frame created thereby.
For example,
As a preliminary matter, one will appreciate that whether a particular frame component is a “first,” “second,” “upper,” or “lower” horizontal component (or a “leftward”/“rightward”) vertical frame component can be somewhat arbitrary. That is, one will understand more fully from the following specification and claims that there may be some instances in which “first” vertical frame component 110a is used in a different position or orientation (e.g., horizontal, interspersed between panels) from what is shown in
In any event,
For example,
Thus,
Along these lines,
Thereafter (or prior to creating all of the preliminary assembly 103), the manufacturer may also secure the bottom horizontal frame component 115a to a lower guide track 140 (
For example,
In at least one implementation, and with the preliminary assembly in place, the manufacturer can then begin sliding or otherwise positioning each panel 105a-c into the preliminary assembly. For example,
In at least one implementation, and prior to inserting the panel 105 into these slots, the manufacturer may also position one or more gaskets 130 in any or all of the slots 113, 117, etc. of each frame component 110, 115. In general, one will appreciate that gasket 130 can be used to accommodate any variations in width or dimension between an edge of a panel 105 and the width or dimension of a given slot 113, 117, etc. Gasket 130 can also be used to accommodate any expansion or contraction that occurs with a given panel or frame to ensure a stable mounting interface. Accordingly, gasket 130 can give partition 100 a sense of stability typically provided only by more permanent components, and even though gasket 130 is capable of being moved and reused.
Accordingly,
In addition to the foregoing,
As with the frame components, the flexible inserts and/or clips described herein can comprise any number of suitable materials, including any number of synthetic or naturally occurring plastics, rubber compounds, or metals, and/or composites thereof, as desired for a particular look, feel, or function. In at least one implementation, the flexible inserts and/or clips comprise primarily PVC materials. In any event, one will appreciate that the materials of any given flexible insert can add a level of stability and adjustability to a given mounting interface. With particular respect to
By contrast, flexible insert 120b shown in
Similarly,
As further shown in
As also shown in
In addition to the foregoing,
In addition, separator 160 may be transparent or translucent, and can be formed from virtually an appropriate material. In at least one implementation, flexible separator 160 is formed from polyvinyl chloride, or PVC. Flexible separator (160), however, can be formed of any appropriately sturdy and/or flexible synthetic or naturally occurring materials, such as synthetic or naturally occurring resins, plastics, rubber compounds, metal, or composites thereof. As shown in
In general, flexible separator 160 will be understood as being a primarily non-structural (or semi-structural), albeit functional, component. As previously described with respect to separating vertically aligned panels 105a-b, for example, flexible separator primarily provides in some aspects an added element of stability, but primarily provides a seal or sound barrier. This contrasts with conventional implementations in a manufacturer might have implemented a silicone caulk between two different panels for the same function. In this particular implementation, however, since there is no caulking between panels, the manufacturer can easily reassemble and reuse the panels if moving or rearranging the partition into another space without having to clean and refinish the caulked edge.
In some implementations, the potential structural aspects of flexible separator 160 are more apparent when using primarily horizontal panel alignments. For example, 5 illustrates yet another implementation of a preliminary assembly in which the manufacturer is preparing a primarily horizontal panel partition 200. Although flexible separator 160 can be effectively the same shape or design as used in
In any event,
Accordingly,
Thereafter, the manufacturer can position another vertical frame component (e.g., 110b) along the exposed edges of the panels, thereby completing the partition. In an implementation in which the horizontal frame components 115a-b are approximately the same length as the panels 105 (in horizontal alignment), each horizontal frame component 115 will have only one edge of one given panel 105 positioned in its corresponding slot 117. By contrast, each vertical frame component 110a-b will receive multiple panel 105 edges positioned in its corresponding slots 113. Such may be commonly the case with 12′×4′ panels, where, when horizontally positioned, three panels are used to reach a partition height of 12′ and above.
In much longer alignments, the horizontal frame components 115 could still hold multiple edges from multiple different panels 105 positioned along its corresponding slot 117. Of course, in such an alignment, there will often be another vertical member 110 that separates two horizontally-laid panels. Accordingly, there would still only be one edge of one given panel positioned in a slot of the horizontal frame components 115 as defined by the distance between two different vertical frame components 110 mounted to the given horizontal frame component 115.
For example,
In addition, and as previously mentioned, implementations of the present are particularly suited to satisfy other creative design choices with minimal cost, such as by providing curved partition alignments. For example,
Of course, an advantage of implementations of the present invention is that virtually any structural shape or length of partition is possible, despite only using relatively temporary, reusable components and materials. For example,
Accordingly, the “stick-built” assemblies of the present invention provide a number of different advantages, allowing a manufacturer to create the appearance of expensive, permanent partitions without the costs ordinarily required, and without the added costs that would otherwise be incurred through reconfigurations. In addition, implementations of the present invention allow partitions to be built on-site, and thus provide a great deal of flexibility and design freedom, both at the time of design, and subsequently during reconfiguration.
For example, a manufacturer (or virtually any member of the organization) can simply move a given partition by uncoupling the horizontal structural members from the structures to which they are secured. In many cases, persons performing the reconfiguration can even move an entire assembly as a unit. In situations, however, where it is not desirable to move the entire assembly as a unit, the unit can be readily disassembled and reassembled at a separate location without incurring any damage to the given partition components.
In general, the components for the panel assemblies can be shipped separately to a particular site, whereupon the manufacturer (or any other designated assembler for the organization) can couple and position the assemblies on-site. In general, one will appreciate that the actual order of assembly may be determined by the overall layout and constraints of the existing space, and thus may vary from one design to the next. In addition, although the implementations described herein have been described in terms primarily of just horizontally-laid or vertically-laid panels in a partition, one will appreciate that the components herein are flexible enough to mix these two types of alignments.
For example, a manufacturer can easily join a horizontally-aligned partition with a vertically-aligned partition. In addition, a manufacturer can horizontally-align one panel against a lower frame component, and then align vertical frame components on top of the horizontally-laid frame components, and so forth. Accordingly, the components in accordance with implementations of the present invention allow for a wide range of design choices.
Furthermore, as a movable assembly, these partitions can be relocated as assembled where handling weight is acceptable and the relocation is within the same area. Still further, the partitions herein can be easily modified or configured to connect to other components, such as sliding doors that would hang from a channel in the upper horizontal frame component (e.g.,
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present invention is a Divisional patent application of U.S. patent application Ser. No. 11/742,591, filed on May 1, 2007, entitled MOVABLE WALLS FOR ON-SITE CONSTRUCTION, which claims the benefit of priority to U.S. Provisional patent Application No. 60/796,422, filed on May 1, 2006, entitled “Movable Walls Configured to be Constructed On-Site.” The entire content of each of the above-mentioned applications is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60796422 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11742591 | May 2007 | US |
Child | 12763948 | US |