The invention and its wide variety of potential embodiments will be readily understood via the following detailed description of certain exemplary embodiments, with reference to the accompanying drawings in which:
According to an exemplary embodiment of a method of the present invention, a hose retractor can be slid onto a hose that will connect a pull-out faucet to a pipe. The hose retractor can be freely slideable on the hose such that it assists in retracting the pull-out faucet to a “home” position after the faucet has been pulled out for use.
Hose 3000 can be constructed in any known manner, including of a polymer (which can include natural and/or synthetic rubber), of a composite that includes a polymer, metal, fiber, and/or fiberglass, and/or of a polymer and/or composite liner surrounded by a covering, such as a helically-wound, braided, or mesh polymeric, fiber, fiberglass, and/or metallic (e.g., stainless steel, brass, etc.) covering, etc. Hose 3000 can have any inner diameter, outer diameter, length, or wall thickness. For example, for certain faucets and/or embodiments, hose 3000 might have an outer diameter selected from a range of about 0.20 to about 1 inch, including all value therebetween, such as about 0.375, 0.440, 0.50, 0.625, 0.640, 0.75 inches, etc, and/or every range therebetween. Hose 3000 can be inserted through a passage in hose retractor 2000 so that hose retractor 2000 can slide along hose 3000. For example, hose retractor 2000 can freely slide along hose 3000 when hand-held spray faucet 5000 is repositioned to a desired position of use 5100 away from its home position 5075.
Thus, hose retractor 2000 can be positioned upon hose 3000 so that it slideably surrounds hose 3000, and the first terminal end 4050 of hose 3000 can be attached to a fixed fluid dispensing device, such as a water source 4000 (e.g., a pipe, tube, hose, fitting, valve, etc.), and the second terminal end 5050 of hose 3000 can be attached to a fluid flow regulation device, such as hand-held spray nozzle, sprayer, and/or faucet 5000. When hand-held spray faucet 5000 is repositioned to a desired position of use 5100 away from home position 5075, hose 3000 can extend from a storage area 8000 under a sink 7000 and hose retractor 2000 can slide freely along that portion 3100 (i.e., (the hidden portion) of hose 3000 that remains under the sink 7000. When hand-held spray faucet 5000 is returned to home position 5075, hose retractor 2000 can also slide freely along hose 3000, assisting in retracting at least a portion of the extended, unhidden, and/or visible portion 3200 of hose 3000.
Since hand-held spray faucet 5000 is often repositioned to a position different from its home position 5075 when it is in use, hose 3000 may be movable in conjunction with hand held spray faucet 5000. Thus, hose 3000 can be made of a flexible, lightweight material. Because hose 3000 is typically lightweight, however, it can lack sufficient mass to return hand-held spray faucet 5000 to its home position 5075 after hand-held spray faucet 5000 is repositioned to a desired position of use 5100.
In this manner, hose retractor 2000 can freely slide along hose 3000 when hand-held spray faucet 5000 is moved and/or repositioned to a desired position of use 5100. Retractor 2000 can have a mass sufficient to return and/or assisting in returning hand-held spray faucet 5000 back to its home position 5075. In certain embodiments, hose retractor 2000 can have a mass that is greater than a combined mass of hand-held spray faucet 5000, a visible or above-sink portion 3200 of the hose 3000 located between hose retractor 2000 and hand-held spray faucet 5000, and/or the fluid contained within the visible portion 3200 of hose 3000. Retractor 2000 can have a mass less than a mass required to dysfunctionally deform hose 3000 when the mass of hose retractor 2000 is applied over an area defined by contact of hose retractor 2000 with hose 3000. As used herein, the phrase “dysfunctionally deform” means a deformation of hose 3000 that reduces the flow rate through hose 3000 by at least 10, 20, and/or 30 percent (including every value therebetween and/or every range therebetween) and/or causes a permanent deformation of the outer surface of hose 3000 sufficient to prevent hose retractor 2000 from freely sliding along hose 3000.
FIG. 3. is an end view of the exemplary hose retractor 2000 of FIG. 2. Hose retractor 2000 can be a unitary toroidal shape, which can define a passage 2040 there-through having a minimum passage width Wp that is greater than an outer width Wh of hose 3000 (shown in FIG. 5). Retractor 3000 can have any weight, including a weight of about 0.25 pounds to about 3 pounds, including every value therebetween, including about 0.33, 0.50, 0.66, 0.75, 1.00, 1.20, 1.40, 1.50, 1.60, 1.80, 2.0, 2.25, 2.5, 2.75 pounds, etc., and/or every range therebetween. Much smaller and/or much larger weights are possible for certain hose and/or faucet configurations.
In certain embodiments, inner portion 2070 and/or inner surface 2075 can define a conic segment 2030 with segment ends at 2050 and 2060 (which can be located at longitudinal ends of retractor 2000, or spaced inward therefrom), and having a width Wcs, a vertex Vcs, a directrix Dcs, a focal point 2020, and a conic segment radius of curvature Rcs measured from focal point 2020 to inner surface 2075.
At any point along the conic segment 2030, the radius of curvature RCS can be defined generally as: RCS=(e*D)/(1−(e*cos(□))), where e is an eccentricity constant for the shape of the particular conic segment, D is the dimension from the focus to the directrix of the conic segment, and □ (shown in
In certain embodiments, the minimum length of conic segment radius of curvature RCS can be greater than a minimum bending radius of hose 3000, yet small enough to prevent ends of retractor 2000, such as segment ends 2050 and 2060, from catching on the hose, including in the grooves of a spirally-wrapped hose, and/or to prevent the hose from wedging inside retractor 2000. Such a configuration for the conic segment can be helpful when the hose is relatively easily dysfunctionally deformable when subjected to the weight of retractor 2000, such as when the hose wall is constructed only of a polymer, or when any covering around the hose is itself relatively easily deformable.
In alternative embodiments, the minimum length of conic segment radius of curvature RCS can be equal to or less than a minimum bending radius of hose 3000. Such a configuration for the conic segment can be helpful when the hose is not relatively easily dysfunctionally deformable when subjected to the weight of retractor 2000, such as when the hose wall is constructed of a polymer surrounded by a helically-wrapped stainless steel covering. With this construction and/or geometry, the contact between retractor 2000 and hose 3000 can tend to form a point and/or line contact, or at least a substantially reduced contact area between retractor 2000 and hose 3000. In the case of certain hose coverings, such as helically-wrapped and/or braided coverings, the configuration of the covering can form a sort of mechanical limit (absent the application of substantially larger forces) on the bending radius easily formable with the hose, even if an underlying inner liner can bend in a tighter radius without adverse impact.
In certain embodiments, such as shown in
In certain alternative embodiments (not shown), the conic segment can be an ellipse, in which e<1 and e=c/a, where c=distance from center to a focal point=(a^2−(b^2)^0.5, where a is half the length of the major axis, b is half the length of the minor axis, and RCS=a(1−e^2)/(1−e*cos(θ)). In those cases where e=0, the ellipse is actually a circle with RCS=constant.
In certain alternative embodiments (not shown), the conic segment can be one half of a hyperbola, in which e>1, and RCS=a*(e^2−1)/(1−(e*cos(θ))), where a, b, and e are defined the same as for an ellipse, but c=(a^2+(b^2)^0.5.
Hose 3000 can be inserted through passage 2040 of hose retractor 2000 so that hose retractor 2000 surrounds at least a portion of hose 3000. The interaction of the inner surface 2075 of hose retractor 2000 with an outer surface of hose 3000 can be sufficiently “slippery” or low in friction that hose retractor 2000 can freely slide along hose 3000 when hand-held spray faucet 5000 (shown in
The static coefficient of friction between the inner surface of retractor 2000 and hose 3000 (or some other flexible member inserted through the passage of retractor 2000, and for which retractor 2000 can assist in retracting, such as any sort of hose, tube, communication cable, wire, electrical cord, flexible conduit, optical fiber, cable, rope, twine, yarn, string, cord, etc.) can be measured using a force gage, such as the Chatillon lines of mechanical or digital force gages by Ametek of Largo, Fla., or can be determined by the angle technique.
To perform the angle technique, hose 3000 can be extended horizontally along a flat horizontal surface, retractor 2000 can be placed adjacent a movable end of hose 3000 and a known distance from a fixed end of hose 3000, and the movable end of hose 3000 can be raised vertically until retractor 2000 starts to slide along hose 3000. The height at which retractor 2000 started to slide can be divided by the known length between the fixed end and the initial position of the retractor on the hose to arrive at the static coefficient of friction.
For example, using the angle technique, the following static coefficients of friction between an inner surface of the retractor and the following flexible members were found:
To achieve a desired value and/or range of the static coefficient of friction, the inner surface 2075 of hose retractor 2000 can be constructed of a material, such as a plastic (e.g., high-density polyethylene, nylon, ABS, etc.) and/or can have a relatively smooth surface finish, having an average surface roughness less than about 250, 125, 64, 32, 16, and/or 8 microinches (as measured by according to ASME B46.1), including every value therebetween and/or every range therebetween. In certain embodiments (not shown), hose retractor 2000 can have a relatively dense core, such as lead, substantially encased by a coating, covering, and/or cladding, such as a plastic. The coefficient of friction, surface finish, dimensions, materials, geometry, weight, and/or other properties of retractor 2000 can be selected to correspond with the particular hose 3000 that will be utilized with a particular faucet, and/or can be selected to work with a wide and/or narrow range of hoses, including various hose types, materials, diameters, wall thicknesses, lengths, etc.
Certain embodiments of the present invention can utilized with hoses that do not have pull-out faucets attached. For example, an embodiment of a retractor of the present invention can be used with nearly any type of hose or tube, such as a garden hose, industrial dishwashing hose, lab hose, pneumatic hose, vacuum hose, welding hose, intravenous tube, etc. Certain embodiments of the present invention can be used with nearly any type of elongated flexible member, such as a rope, twine, string, yarn, wire, cable, electrical cord, communications cable, telephone wire, flexible conduit, optical fiber, etc.
For instance, an exemplary embodiment of retractor according to the present invention can be used to help keep moderate tension on an electrical cord for a soldering iron, to help keep the cord out of the way of one using the soldering iron, and to retract the cord when the soldering iron is returned to a “home” position. Likewise, an exemplary embodiment of retractor according to the present invention can be used with a pull-out vacuum hose to help retract the hose into a storage cavity when not in use and/or when that portion of the hose does not need to be extended from the cavity.
Although the invention has been described with reference to certain specific exemplary embodiments thereof, it will be understood that numerous variations, modifications and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive.
Number | Name | Date | Kind |
---|---|---|---|
2608409 | Pinkerton | Aug 1952 | A |
3716239 | Goudreau | Feb 1973 | A |
3971559 | Diforte, Jr. | Jul 1976 | A |
4260150 | Tabet | Apr 1981 | A |
4827538 | Heimann | May 1989 | A |
5090062 | Hochstrasser | Feb 1992 | A |
5095554 | Gloor | Mar 1992 | A |
5361431 | Freier | Nov 1994 | A |
5575424 | Fleischmann | Nov 1996 | A |
5771934 | Warshawsky | Jun 1998 | A |
5960832 | Warshawsky | Oct 1999 | A |
6250338 | Dempsey | Jun 2001 | B1 |
20040010848 | Esche | Jan 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040216789 A1 | Nov 2004 | US |