Embodiments of the present disclosure generally relate to the field of stair systems and methods. More specifically, embodiments provided herein relate to moveable stairs, including expansion joint systems and methods, for allowing directional and/or differential movements between levels and within stair structures to provide safe egress, enhance rescue, and/or reduce damage during movement.
In multi-level buildings and structures stairs are essential to not only providing a means for moving about the levels but also for providing safe egress out of the structure in the event of an emergency. As such, stair safety is a constant concern as taller buildings continue to be constructed of new and more efficient materials and in various locations around the globe. The construction and installation of stairs create a necessary exit path that is regulated by various building codes which oftentimes require the stairs to survive fire and structural damage such that occupants can safely exit the building during a state of emergency.
Conventional stair assemblies, however, are rigidly connected to a landing or building structure rather than dynamically connected to a landing or building structure. As such, typical stair assemblies do not allow for sufficient movement in the event of building motion (e.g., during a seismic event). Rigid stairs create a force that must be accounted for in the building design. Furthermore, due to the interstory drift that occurs during building motion, rigidly connected stair systems can cause damage to any of the surrounding structure, the area below the stair system, and/or the stair system itself. Rigid stairs can disconnect, crumble, fail, and/or fall during building motion, which prohibits occupants from safely exiting, delays rescue operations, and threatens safety. Any damage to and/or collapse of the stair system immediately eliminates a means of egress from the building and places the occupants therein in additional danger during or after a building motion event and/or emergency.
Thus, stair safety and installation can increase building safety and reduce the effects of building motion. Therefore, what is needed in the art is a moveable stair system and method. More specifically, what is needed is a stair expansion system and method which allows for multidirectional movement and orbital capacity to absorb landing displacement without damage to the stairs.
The present disclosure relates to stair systems and methods for allowing stair movement between building levels while maintaining the structural integrity of the stair system for safe egress passage. The systems and methods of the present disclosure allow for independent movement of the surrounding building walls, landings, floor slabs, and/or any other portion of the surrounding building structure or stair system. The embodiments of the present disclosure are suitable for use in both new constructions as well as in existing constructions for retrofit applications to allow for movement between levels, landings, or within stairwell structures. The present disclosure can reduce stair damage during building movement whether it is from wind, thermal, or seismic activity, and/or any other type of suitable force or experience, as the present disclosure allows for directional movement, or a combination thereof, including tension and compression, lateral, or vertical movement.
The purpose and advantages of the disclosed subject matter will be set forth in and apparent from the description that follows, as well as will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the systems and method particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve the above and other advantages and in accordance with the purpose of the disclosed subject matter, as embodied and broadly described, the disclosed subject matter includes stair systems and methods. In some example embodiments, the stair system includes a first connector, a sliding body, an upper connector, a lower connector, and a second connector. The sliding body is operatively connected with the first connector. The sliding body includes a first end and a second end, and the second end is opposite the first end. The upper connector is operatively connected with the sliding body. The upper connector is operatively connected and telescopically disposed within the lower connector. The second connector is operatively connected with the lower connector at a first connection point.
In some embodiments, the first connector includes a first body. The first body can have a base for connection with a stair or landing, a first arm, and a second arm. Each of the first arm and the second arm can extend outward from the base. In some embodiments, the sliding body is cylindrical. In some embodiments, a first length between the first end of the sliding body and the second end of the sliding body is greater than a second length between the first arm of the first body and the second arm of the first body. In some embodiments, the upper connector is operatively connected with the sliding body at an approximate midpoint of the sliding body. In some embodiments, the sliding body extends through each of the first arm and the second arm such that the first arm and the second arm support the sliding body. In some embodiments, the upper connector is operatively coupled with the sliding body between the first arm and the second arm. In some embodiments, each of the first arm and the second arm include a circular cut-out therethrough allowing sliding movement and rotational movement of the sliding body therein. In some embodiments, the stair system can further include a first restriction body operatively disposed through each of the upper connector and the lower connector. In some embodiments, the first restriction body is a pin. In some embodiments, the upper connector includes a first slot therethrough and the lower connector includes a second slot therethrough. In some embodiments, the pin can be disposed through each of the first slot and the second slot to allow for telescopic movement of the upper connector with respect to the lower connector. In some embodiments, the second connector can include a shoe and a mounting portion connected with the shoe. In some embodiments, the first connector can be a landing connector and the second connector can be a stair connector. In some embodiments, the stair system can further include a pad coupled with the second connector. The pad can include a low friction material. The pad can be configured to be disposed between the second connector and a stair support. In some embodiments, the stair system can further include a pad disposed between the upper connector and the lower connector. In some embodiments, the pad can include a low friction material. In some embodiments, the sliding body can be configured for movement in a first lateral direction along a longitudinal axis of the sliding body and rolling movement about the longitudinal axis of the sliding body. In some embodiments, the lower connector can be configured for rotational movement about the first connection point. In some embodiments, the lower connector and the second connector can be configured for movement relative to the upper connector in a second lateral direction perpendicular to the first lateral direction.
In other example embodiments, a retrofit system for stairs is disclosed. The retrofit system includes a support angle, a rail, and a bracket. The support angle includes a horizontal panel and a vertical panel. The support angle is configured for connection to the stairs. The rail is disposed on the horizontal panel, and the bracket is configured for coupling with a tread of the stairs. The bracket is configured to at least partially form fit over a top of the rail such that the bracket allows for sliding movement of the stairs as guided by the rail.
In some embodiments, the positive connection assembly includes a nut and bolt assembly. In some embodiments, the bracket includes a first member and a second member that together form a U-shape. In some embodiments, the retrofit system for stairs can further include a top tread configured for disposal between a landing and the stairs to visually obstruct the support angle.
In further example embodiments, a stair system is disclosed. The stair system includes a first movement system and a second movement system. The first movement system includes a first landing connector, a first support beam, and a first connection system. The first landing connector includes a first guide rail and at least one first foot coupled with the first guide rail. The first support beam is operatively coupled with the first guide rail, such that the first support beam slides along the first guide rail. The first connection system couples the at least one first foot with at least one of a first stair, a first landing, or a first ground location. The second movement system includes a second landing connector, a second support beam, and a second connection system. The second landing connector includes a second guide rail and at least one second foot coupled with the second guide rail. The second support beam is operatively coupled with the second guide rail, such that the second support beam slides along the second guide rail. The second connection system couples the at least one second foot with at least one of a second stair, a second landing, or a second ground location. The first movement system allows for movement in a first direction and the second movement system allows for movement in a second direction perpendicular to the first direction. The first movement system is configured for coupling with a bottom landing of a first stair set and the second movement system is configured for coupling with a top landing of the first stair set.
In some embodiments, the stair system can further include a third movement system and a fourth movement system. In some embodiments, the third movement system can include a third landing connector, a third support beam, and a third connection system. In some embodiments, the third landing connector can include a third guide rail and at least one third foot coupled with the third guide rail. In some embodiments, the third support beam can be operatively coupled with the third guide rail, such that the third support beam slides along the third guide rail. In some embodiments, the third connection system can couple the at least one third foot with at least one of a third stair, a third landing, or a third ground location. In some embodiments, the fourth movement system can include a fourth landing connector, a fourth support beam, and a fourth connection system. In some embodiments, the fourth landing connector can include a fourth guide rail and at least one fourth foot coupled with the fourth guide rail. In some embodiments, the fourth support beam can be operatively coupled with the fourth guide rail, such that the fourth support beam slides along the fourth guide rail. In some embodiments, the fourth connection system can couple the at least one fourth foot with at least one of a fourth stair, a fourth landing, or a fourth ground location. In some embodiments, the third movement system can allow for movement in the second direction. In some embodiments, the fourth movement system can allow for movement in the first direction. In some embodiments, the third movement system is configured for coupling with the top landing of the first stair set and the fourth movement system is configured for coupling with a top landing of the second stair set.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the disclosed subject matter claimed.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, can be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, and can admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment can be beneficially incorporated in other embodiments without further recitation.
The present disclosure relates to stair systems and methods for allowing stair movement between building levels while maintaining the structural integrity of the stair system for safe egress passage. The systems and methods of the present disclosure allow for independent movement of the surrounding building walls, landings, floor slabs, and/or any other portion of the surrounding building structure or stair system. The embodiments of the present disclosure are suitable for use in both new constructions as well as in existing constructions for retrofit applications to allow for movement between levels, landings, or within stairwell structures. The present disclosure can reduce stair damage during building movement whether it is from wind, thermal, or seismic activity, and/or any other type of suitable force or experience, as the present disclosure allows for directional movement, or a combination thereof, including tension and compression, lateral, or vertical movement.
Reference will now be made in detail to various exemplary embodiments of the disclosed subject matter, examples of which are illustrated in the accompanying drawings. The examples are not intended to limit the scope of the disclosed subject matter in any manner. The disclosed subject matter will be described in conjunction with the detailed description of the system. For purpose of illustration, and not limitation,
The stair system 100 can also include a sliding body 118. The sliding body 118 has a first end 120 and a second end 122, wherein the second end 122 is opposite the first end 120. In some embodiments, the sliding body 118 is cylindrical, although other suitable shapes are contemplated. As described above, the shape of each cutout 116 can match the shape of the sliding body 118, such that the sliding body 118 can be inserted into and/or through each cutout 116. In some embodiments, the sliding body 118 is operatively connected with the first connector 106. As shown in
In some embodiments, the stair system 100 also includes an upper connector 126. The upper connector 126 is operatively connected with the sliding body 118, such that the upper connector 126 and the sliding body 118 move in unison. In some embodiments, the upper connector 126 can be operatively connected with the sliding body 118 via, for example, a welded connection, a pinned connection, a threaded connection, a bolted connection, or any other suitable connection means. In some embodiments, the upper connector 126 is operatively connected with the sliding body 118 at an approximate midpoint M of the sliding body 118. In some embodiments, the upper connector 126 is operatively connected with the sliding body 118 between the first arm 112 of the first body 108 and the second arm 114 of the first body 108. The movement of the sliding body 118 in the first and second lateral directions L is limited by the distance from the upper connector 126 to either the first arm 112 or the second arm 114.
The stair system 100 can further include a lower connector 128. For example, the upper connector 126 is operatively connected and telescopically disposed within the lower connector 128. As such, the upper connector 126 slides within the lower connector 128. In some embodiments, the upper connector 126 can fit within the lower connector 128, such the upper connector 126 can be extended into and out of lower connector 128. It is contemplated, however, that in some embodiments, the lower connector 128 can be operatively connected and telescopically disposed within the upper connector 126. Other telescoping connections between the upper connector 126 and the lower connector 128 are also contemplated.
In some embodiments, each of the upper connector 126 and the lower connector 128 have one or more slots 130 formed at least partially through like sides of the upper connector 126 and the lower connector 128, such that the slots 130 of each of the upper connector 126 and the lower connector 128 at least partially overlap. For example, the slots 130 can extend the along a longitudinal axis of the upper connector 126 and the lower connector 128, such as, in the direction of the telescoping movement of the upper connector 126. The slots 130 can be sized to allow for the operative disposal of a first restriction body 132 therethrough. In some embodiments, the first restriction body 132 is operatively disposed through each of the upper connector 126 and the lower connector 128, to prohibit the upper connector 126 from disconnecting with the lower connector 128 during the telescoping movement. The first restriction body 132 is disposed through each slot 130 to allow for telescopic movement of the upper connector with respect to the lower connector 128. As such, the first restriction body 132 controls the upper connector 126 as the outer surface 134 of the upper connector 126 moves along the inner surface 136 of the lower connector 128. The first restriction body 132 is restrained by the slots 130 in the lower connector 128. In some embodiments, the first restriction body 132 is configured to provide between about 1 inch and about 10 inches of movement, for example, between about 1 inch and about 5 inches of movement. In some embodiments, the first restriction body 132 is a pin. In other embodiments, the first restriction body 132 can include a bolt and nut, a rod, a welded pin, a cotter pin, an extruded component, or any other suitable restrictor or component.
In some embodiments, a pad 138 is disposed between the upper connector 126 and the lower connector 128. In some embodiments, the pad 138 is coupled to the outer surface 134 of the upper connector 126, while in other embodiments, the pad 138 is coupled to the inner surface 136 of the lower connector 128. The pad 138 can include a low friction material, such as, by way of example only, PTFE, HDPE, polished stainless steel, or other suitable materials. The low friction material encourages free movement and/or reduces the friction between the upper connector 126 and the lower connector 128, thus allowing for smoother telescoping motion of the upper connector 126 within the lower connector 128, or vice versa.
The stair system 100 can further include a second connector 140. The second connector 140 is operatively connected with the lower connector 128 at a first connection point 142. In some embodiments, the second connector 140 includes a shoe 144 and a mounting portion 146. In some embodiments, the lower connector 128 includes at least one hole disposed therethrough for connecting with the second connector 140. Likewise, in some embodiments, the second connector 140 or the shoe 144 includes at least one hole disposed therethrough for connecting with the lower connector 128. The second connector 140 or the shoe 144 of the second connector 140 can operatively connect with the lower connector 128 at the first connection point 142 via a second restriction body 148. In some embodiments, the second restriction body 148 can be a pin, a bolt, a rod, or any other suitable connection body. The second restriction body 148 allows the lower connector 128 to rotate or move relative to the second connector 140 about the first connection point 142. As such, the lower connector 128 is configured for rotational movement W about the first connection point 142. Furthermore, the lower connector 128 and the second connector 140 are configured for movement relative to the upper connector 126 in third and fourth lateral directions Q, perpendicular to the first and second lateral directions L. Therefore, the lower connector 128 rotates on the second restriction body 148 while maintaining the vertical orientation of the second connector 140 and the stairs 102 during movement.
In some embodiments, the second connector 140 is configured for coupling with stair landing 104, an individual stair of stairs 102, the ground, and/or any other suitable connection structure. To facilitate and/or encourage free movement of the second connector 140, a pad 150, similar to pad 138, can be coupled with the second connector 140. The pad 150 can include a low friction material, such as, by way of example only, PTFE, HDPE, polished stainless steel, or other suitable material. The pad 150 is configured to be disposed between the second connector 140 and a stair support 152. In some embodiments, the second connector 140 and/or the stairs 102 can rest on the stair support 152. The stair support provides stability for stairs 102 to function during all movements and normal (static) operation.
In some embodiments, the stair system 100 further includes a cover plate 154. In some embodiments, the cover plate 154 is operatively connected with the stair system 100 or portion thereof, while in other embodiments the cover plate 154 is operatively connected with the stairs 102, and in other embodiments the cover plate 154 is a separate system. The cover plate 154 is configured to cover a gap and/or the stair system 100 between the stairs 102 and any of a landing, ground, or other system. The cover plate 154 is therefore configured to slide in any lateral direction (e.g., forward/backward and/or side-to-side), raise, and/or lower as the stairs 102 move in order to provide a continuous, gap-less, path. The cover plate 154 can be, for example, a metal sheet or plate, an extruded plate, an expansion joint cover system, or any other suitable covering.
As shown in
For propose of illustration and not limitation,
The movement of the stair system 100 described herein, including the telescopic movement, allows the stairs 102 to remain generally parallel to the ground (i.e., no tilt) when moving in tension and compression, thus allowing for safe egress. On the other hand, hypothetical stair systems which swing, tilt, and/or do not remain generally parallel to the ground during tension and compression have increased dangers during egress, as a user may lose balance and/or fall during an evacuation.
Stair systems in accordance with the disclosed subject matter, including the stair system 100, are configured to permit multiaxial movement of stairs 102 between building levels and/or landings. Testing has been performed and results indicate that the stair system 100 safely allows for multidirectional movement between about 0.1 inch and about 10 inches, such as between about 1 inch and about 5 inches. It is contemplated, however, that the movement capabilities of the stair system 100 are defined by each specific building requirements, project requirements, and/or required clearances. As such, the specific movement requirements for each stair system 100 are able to be altered to meet the requirements and clearances as detailed above.
Benefits of stair systems in accordance with the disclosed subject matter include that the stair system 100 provides multidirectional movement and orbital capacity to absorb landing displacement without damage to the stair system, thus allowing for safe egress. Additionally, the stair system 100 is easily disposed at the top or bottom of a flight of stairs, thus allowing all movement to be located at one point (e.g., an intermediate landing) as opposed to requiring each axis of movement to be located at opposite ends of the flight. As such, one end of the flight of stairs can remain fixed yet still provide the benefits of multidirectional movement. Additionally, multidirectional movement in stairs reduces the risk of damage to adjacent architecture and structural components.
For the purpose of illustration and not limitation,
As shown in
The stair system 300 can also include an extension rod 360. The extension rod 360 can be disposed between each of the first arm 312 and the second arm 314. In some embodiments, the extension rod 360 is operatively connected with each cutout 316 of the first arm 312 and the second arm 314, such that the extension rod 360 is disposed at least partially within the first arm 312 and the second arm 314 and/or secured in place by the first arm 312 and the second arm 314. Furthermore, the extension rod 360 can be of any suitable shape, such as cylindrical as shown in
The stair system 300 can also include a sliding body 318. The sliding body 318 has a first end 320 and a second end 322, wherein the second end 322 is opposite the first end 320. The sliding body 318 is configured such that the sliding body 318 is a rotating upper coupler. As such, the sliding body 318 is configured to fit over the extension rod 360. Therefore the sliding body 318 is of a similar shape as the extension rod 360 and size to fit about an exterior surface of the extension rod 360. In some embodiments, the sliding body 318 is cylindrical such that the sliding body 318 fits around a cylindrical extension rod 360, thus allowing for sliding movement and rotational movement of the sliding body 318 about the extension rod 360. As such, the sliding body 318 can move freely on the extension rod 360. Therefore, as shown in
In some embodiments, the stair system 310 can also include an upper connector 326. The upper connector 326 is operatively connected with the sliding body 318, such that the upper connector 326 and the sliding body 318 move in unison. In some embodiments, the upper connector 326 can be operatively connected with the sliding body 318 via, for example, a welded connection, a pinned connection, a threaded connection, a bolted connection, an extruded component, or any other suitable connection means. In some embodiments, the upper connector 326 is operatively connected with the sliding body 318 at an approximate midpoint M of the sliding body 318.
The stair system 300 can further include a lower connector 328. For example, the upper connector 326 is operatively connected and telescopically disposed within the lower connector 328. As such, the upper connector 326 slides within the lower connector 328. In some embodiments, the upper connector 326 can fit within the lower connector 328, such that the upper connector 326 can be extended into and out of lower connector 328. It is contemplated, however, that in some embodiments, the lower connector 128 can be operatively connected and telescopically disposed within the upper connector 126. Other telescoping connections between the upper connector 126 and the lower connector 128 are also contemplated.
In some embodiments, each of the upper connector 326 and the lower connector 328 have one or more slots 330 formed at least partially through like sides of the upper connector 326 and the lower connector 328, such that the slots 330 of each of the upper connector 326 and the lower connector 328 at least partially overlap. For example, in some embodiments, the slots 330 can extend the along a longitudinal axis of the upper connector 326 and the lower connector 328, such as, in the direction of the telescoping movement of the upper connector 326. The slots 330 can be sized to allow for the operative disposal of a first restriction body 332 therethrough. In some embodiments, the first restriction body 332 is operatively disposed through each of the upper connector 326 and the lower connector 328, to prohibit the upper connector 326 from disconnecting with the lower connector 328 during the telescoping movement. The first restriction body 332 is disposed through each slot 330 to allow for telescopic movement of the upper connector with respect to the lower connector 328. As such, the first restriction body 332 controls the upper connector 326 as the outer surface 334 of the upper connector 326 moves along the inner surface 336 (not shown) of the lower connector 328. The first restriction body 332 is restrained by the slots 330 in the lower connector 328. In some embodiments, the first restriction body 332 is configured to provide between about 1 inch and about 10 inches of movement, for example, between about 1 inch and about 5 inches of movement. In some embodiments, the first restriction body 332 is a pin. In other embodiments, the first restriction body 332 can include a bolt and nut, a rod, a welded pin, a cotter pin, an extruded component, or any other suitable restrictor or component.
In some embodiments, a pad 338 is disposed between the upper connector 326 and the lower connector 328. In some embodiments, the pad 338 is coupled to the outer surface 334 of the upper connector 326, while in other embodiments, the pad 338 is coupled to the inner surface 336 of the lower connector 328. The pad 338 can include a low friction material, such as, by way of example only, PTFE, HDPE, polished stainless steel, or other suitable materials. The low friction material encourages free movement and/or reduces the friction between the upper connector 326 and the lower connector 328, thus allowing for smoother telescoping motion of the upper connector 326 within the lower connector 328.
The stair system 300 can further include a second connector 340. The second connector 340 is operatively connected with the lower connector 328 at a first connection point 342. In some embodiments, the second connector 340 includes a shoe 344 and a mounting portion 346. In some embodiments, the lower connector 328 includes at least one hole disposed therethrough for connecting with the second connector 340. Likewise, in some embodiments, the second connector 340 or the shoe 344 includes at least one hole disposed therethrough for connecting with the lower connector 328. The second connector 340 or the shoe 344 of the second connector 340 can operatively connect with the lower connector 328 at the first connection point 342 via a second restriction body 348. In some embodiments, the second restriction body 348 can be a pin, a bolt, a rod, or any other suitable connection body. The second restriction body 348 allows the lower connector 328 to rotate or move relative to the second connector 340 about the first connection point 342. As such, the lower connector 328 is configured for rotational movement W about the first connection point 342. Furthermore, the lower connector 328 and the second connector 340 are configured for movement relative to the upper connector 326 in a second lateral direction Q, perpendicular to the first lateral direction K. Therefore, the lower connector 328 rotates on the second restriction body 348 while maintaining the vertical orientation of the second connector 340 and the stairs 302 during movement.
In some embodiments, the second connector 340 is configured for coupling with stair landing 304, an individual stair of stairs 302, the ground, and/or any other suitable connection structure. To facilitate and/or encourage free movement of the second connector 340, a pad 350, similar to pad 338, can be coupled with the second connector 340. The pad 350 can include a low friction material, such as, by way of example only, PTFE, HDPE, polished stainless steel, or other suitable material. The pad 350 is configured to be disposed between the second connector 340 and a stair support 352. In some embodiments, the second connector 340 and/or the stairs 302 can rest on the stair support 352. The stair support provides stability for stairs 302 to function during all movements and normal (static) operation.
In some embodiments, the stair system 300 further includes a cover plate 354. In some embodiments, the cover plate 354 is operatively connected with the stair system 300 or portion thereof, while in other embodiments the cover plate 354 is operatively connected with the stairs 302, and in other embodiments the cover plate 354 is a separate system. The cover plate 354 is configured to cover a gap and/or the stair system 300 between the stairs 302 and any of a landing, ground, or other system. The cover plate 354 is therefore configured to slide in any lateral direction (e.g., forward/backward and/or side-to-side), raise, and/or lower as the stairs 302 move in order to provide a continuous, gap-less, path. The cover plate 354 can be, for example, a metal sheet or plate.
As shown in
As shown,
The movement of the stair system 300 described herein, including the telescopic movement, allows the stairs 302 to remain generally parallel to the ground (i.e., no tilt) when moving in tension and compression, thus allowing for safe egress. On the other hand, hypothetical stair systems which swing, tilt, and/or do not remain generally parallel to the ground during tension and compression have increased dangers during egress, as a user may lose balance and/or fall during an evacuation.
As shown,
As shown,
The stair system 300 is configured to permit multiaxial movement of stairs 302 between building levels and/or landings. Testing has been performed and results indicate that the stair system 300 safely allows for multidirectional movement between about 0.1 inch and about 10 inches, such as between about 1 inch and about 5 inches. It is contemplated, however, that the movement capabilities of the stair system 300 are defined by each specific building requirements, project requirements, and/or required clearances. As such, the specific movement requirements for each stair system 300 are able to be altered to meet the requirements and clearances as detailed above.
Benefits of stair systems in accordance with the disclosed subject matter include that the stair system 300 provides multidirectional movement and orbital capacity to absorb landing displacement without damage to the stair system 300, thus allowing for safe egress. Additionally, the stair system 300 is easily disposed at the top or bottom of a flight of stairs, thus allowing all movement to be located at one point (e.g., an intermediate landing) as opposed to requiring each axis of movement to be located at opposite ends of the flight. As such, one end of the flight of stairs can remain fixed. Also, multidirectional movement in stairs reduces the risk of damage to adjacent architecture and/or structural components.
For purpose of illustration and not limitation,
The operative connection of the first connector 406 with the third connector 410 and the second connector 408 with the third connector 410 allows the third connector 410 to swing as the stairs 402 move in tension and compression, perpendicularly away from and towards the stair landing 404. The second connector 408 can rotate to maintain the stairs 402 in a vertical orientation as the stairs 402 move horizontally away from the stair landing 404. As such, the stair system 400 is configured to allow the stairs 402 to move away from and/or towards the face 428 of the stair landing 404 as the stairs 402 rotate.
In some embodiments, the stair system 400 can further include a cover plate 420. In some embodiments, the cover plate 420 is operatively connected with the stair system 400 or portion thereof, while in other embodiments the cover plate 420 is operatively connected with the stairs 402, and in other embodiments the cover plate 420 is a separate system. In other embodiments, the cover plate 420 can be connected with a top tread of the stairs 402 thus rising and falling with any movement of the stairs 402. Furthermore, in some embodiments, the cover plate 420 is not connected to the stair landing 404. The cover plate 420 is configured to cover a gap 422 and/or the stair system 400 between the stairs 402 and any of a stair landing 404, ground, or other system. The cover plate 420 is therefore configured to slide in any lateral direction (e.g., forward/backward and/or side-to-side), raise, lower, and/or rotate with the stairs 402 as the stairs 402 move in order to provide a continuous, gap-less, path. The cover plate 420 can be, for example, a metal sheet or plate.
In some embodiments, and as shown in
In another embodiment, and as shown in
The stair system 400 is configured to permit multiaxial movement of stairs 402 between building levels and/or landings. Testing has been performed and results indicate that the stair system 400 safely allows for multidirectional movement between about 0.1 inch and about 10 inches, such as between about 1 inch and about 5 inches. It is contemplated, however, that the movement capabilities of the stair system 400 are defined by each specific building requirements, project requirements, and/or required clearances. As such, the specific movement requirements for each stair system 400 are able to be altered to meet the requirements and clearances as detailed above.
Benefits of stair systems in accordance with the disclosed subject matter include that the stair system 400 provides multidirectional movement to absorb landing displacement without damage to the stair system 400. Additionally, the stair system 400 is easily disposed at the top or bottom of a flight of stairs, thus allowing all movement to be located at one point (e.g., an intermediate landing) as opposed to requiring each axis of movement to be located at opposite ends of the flight. As such, one end of the flight of stairs can remain fixed.
For purpose of illustration and not limitation,
Moreover, as shown in
For purpose of illustration and not limitation,
The retrofit system 600 can also include a rail 608 and a bracket 610. The rail is disposed on the horizontal panel 604. In some embodiments, the rail 608 can be welded, bolted, and/or mechanically fastened to the support angle 602. The bracket 610 is configured for coupling with a tread 612 or the side stringer of the stairs, for example, an underside of the tread. The bracket 610 is configured to at least partially form fit over a top of the rail 608 such that the bracket 610 allows for sliding movement of the stairs 102 as guided by the rail 608. In some embodiments, the bracket 610 can include a first member 620 and a second member 622 that together form a U-shape, as shown in
In some embodiments, as also shown in
Additionally, in some embodiments, the retrofit system 600 can include a top tread 612 of a stair. The top tread 612 is configured for disposal between the landing 616 and the stairs 102. As such, the top tread 612 visually obstructs the support angle 602.
Retrofit systems in accordance with the disclosed subject matter, including the retrofit system 600, allow for movement of the stairs 102 in the lateral direction. In order to retrofit an existing set of stairs 102 and/or landing 616 to allow for movement, the uppermost stair tread is removed and a typical non-retro-fitted connection, including a plate 614A and bolt 614B, are also removed. While the stringers are supported the support angle 602 and the rail 608 are each operatively connected to the existing landing channel 616 and the bracket 610 is coupled with a tread of the existing staircase. Top tread 612 is operatively connected with the retrofit system 600 to replace the previously removed uppermost tread. The top tread 612 is configured to cover any gaps disposed between the stairs 102 and the landing 616 such that a continuous surface is provided during all movement scenarios.
Exemplary benefits of retrofit systems in accordance with the disclosed subject matter include a reduction in the amount of space required for the overall installation, and protection/salvage of the existing stair system. Additionally, the retrofit system 600 provides for an installation process that is simplified, thus resulting in cost reductions.
For purpose of illustration and not limitation,
In some embodiments, as shown in
The first movement system 710 can also include a first support beam 718. The first support beam 718 is operatively coupled with the first guide rail 714, such that the first support beam 718 slides along the first guide rail 714. The first support beam 718 can be constructed from any suitable material for supporting stairs, and as shown, can be hollow or solid, or any combination thereof. Suitable materials can include, for example, metal (e.g., aluminum), plastics, and/or glass. The first support beam 718 can be square-shaped, rectangular, L-shaped, double-L shaped, or any other suitable shape. In some embodiments, the first movement system 710 further includes a first connection system 720. The first connection system 720 is configured to couple the at least one first foot 716 with at least one of a first stair, a first landing, or a first ground location.
In some embodiments, as shown in
The second movement system 730 can also include a second support beam 738. The second support beam 738 is operatively coupled with the second guide rail 734, such that the second support beam 738 slides along the second guide rail 734. The second support beam 738 can be constructed from any suitable material for supporting stairs, and as shown, can be hollow or solid, or any combination thereof. The second support beam 738 can be square-shaped, rectangular, L-shaped, double-L shaped, or any other suitable shape.
In some embodiments, the second movement system 730 further includes a second connection system 740. The second connection system 740 is configured to couple the at least one second foot 736 with at least one of a second stair, a second landing, or a second ground location.
As shown in
As further shown in
Referring to
The third movement system 750 can also include a third support beam 758. The third support beam 758 is operatively coupled with the third guide rail 754, such that the third support beam 758 slides along the third guide rail 754.
In some embodiments, the third movement system 750 further includes a third connection system 760. The third connection system 760 is configured to couple the at least one third foot 756 with at least one of a third stair, a third landing, or a third ground location.
Referring to
The fourth movement system 770 can also include a fourth support beam 778. The fourth support beam 778 is operatively coupled with the fourth guide rail 774, such that the fourth support beam 778 slides along the fourth guide rail 774.
In some embodiments, the fourth movement system 770 further includes a fourth connection system 780. The fourth connection system 780 is configured to couple the at least one fourth foot 776 with at least one of a fourth stair, a fourth landing, or a fourth ground location.
Referring again to
Utilization of the first movement system 710 at the first landing 790 (e.g., bottom) of the first stair set 800 and the second movement system 730 at the second landing 792 (e.g., top) of the first stair set 800, allows the first stair set 800 to move in both a tension and a compression direction. Likewise, the utilization of the third movement system 750 at the second landing 792 of the first stair set 800 and the fourth movement system 770 at the third landing 794 of the second stair set 802, allows the second stair set 802 to move in both a tension and a compression direction.
In some embodiments, it is contemplated that lubricants can be utilized with the stair system 700 disclosed, however, testing has been performed and results indicate that the frictional forces between the parts of the stair system 700 provide a resistance that is sufficiently overcome during actions which require stair movement without lubricants.
For purpose of illustration and not limitation,
The present disclosure is not limited to the specific combinations of the embodiments disclosed as it is contemplated that any number of the disclosed embodiments can be combined to allow for additional stair movement. The stair systems and methods disclosed allow for stair movement between building levels, platforms, landings, or the like while maintaining the structural integrity of the stair system for safe egress passage. The systems and methods disclosed further allow for independent movement of the surrounding building walls, landings, floor slabs, and/or any other portion of the surrounding building structure to the stair system. The embodiments of the present disclosure are suitable for use in both new constructions as well as in existing constructions for retrofit applications to allow for movement between levels, landings, or within stairwell structures. The present disclosure can reduce stair damage during building movement whether it is from wind, thermal, or seismic activity, and/or any other type of suitable force or experience, as the present disclosure allows for directional movement, or a combination thereof, including tension and compression, lateral, or vertical movement.
While the foregoing is directed to embodiments described herein, other and further embodiments can be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a divisional of U.S. patent application Ser. No. 16/612,800, filed on Nov. 12, 2019, which is a U.S. National Stage Patent Application under 35 U.S.C. §371 of International Application No. PCT/US2018/029697, filed on Apr. 27, 2018, which claims priority to U.S. Provisional Application Ser. No. 62/506,255, filed on May 15, 2017, the contents of each of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62506255 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16612800 | Nov 2019 | US |
Child | 17192288 | US |