This invention relates to movement controls, and in particular to devices for providing damped control of movable furniture parts such as lids, doors and drawers and drop-down flaps.
It is known to provide a stay for the lid of a piece of furniture such as a linen chest, which acts upon opening of the lid to hold it in an open position and which can be de-activated to allow the lid to close. Some such stays also feature a friction mechanism, which may be adjustable, which is designed to act as a brake to stop the lid from slamming shut.
The present invention aims to improve upon existing movement controls and provides an assembly for controlling movement of a first member relative to a second member in a piece of furniture, said assembly comprising a rotary shear damper having first and second elements mounted for rotation relative to one another with a viscous substance interposed therebetween to provide damping resistance to said relative rotational movement between the elements, the damper being connected to the first member, and drive means connected between the second member and the damper such that movement of the second member in at least one direction relative to the first member causes rotary movement of the damper thereby to impart a damping resistance to said movement of the second member, the drive means comprising a first element having a helically extending camming track and a second element having a cm follower to engage and follow said camming track, with the camming track having a pitch defined as the distance in the direction of movement of the second member between successive twists of the camming track, and with the cam follower being arranged to make driving contact with the camming track over a distance in the direction of movement of the second member of the less than the smallest pitch of the track.
By way of example, embodiments of the invention will now be described with reference to the accompanying drawings, in which:
a to 4c illustrate various modified forms of the assembly of
A suitable damper 13 for use in such, an assembly is a so-called rotary shear damper. Rotary shear dampers are known in the, art and basically consist of one, part which is rotatably movable relative to another, with a viscous substance, such as silicone, between the two, parts to absorb energy when the parts rotate and hence provide resistance to the rotary movement, i.e. damping. Such dampers are available on the market as standard in a number of different sizes and designs and these are referred to herein generally as “rotary shear dampers”. The movement control assembly shown in
Looking now at
The upper (as viewed in
The cylindrical working chamber formed between the stator or stationary casing 18 and rotatable rotor or inner sleeve 19 forms a shear space which is filled with a cylindrical body of the liquid viscous damping medium 20 which is an energy absorbing substance. The viscous damping medium 20 fills the cylindrical working chamber and provides resistance to relative rotation between the rotatable inner sleeve 19 and stationary casing 18. This resistance is generated by shearing of the viscous damping medium 20 during rotation of the inner sleeve 19 relative to the casing 18.
As was previously mentioned, the viscous damping medium 20 may be silicone. However, a damping medium 20 having a different composition may be used if desired. Although the damping medium 20 is a liquid, a particulate or a liquid particulate mixture may be used as the damping medium. The casing 18 and sleeve 19 are formed of metal. However, the stator 18 and/or rotor 19 may be formed of a polymeric material.
In the illustrated embodiment of the invention, the liquid damping medium 20 is disposed between two shear surfaces. Thus, the liquid damping medium 20 is disposed between a cylindrical inner side surface of the casing 18 and a cylindrical outer side surface of the sleeve 19. The cylindrical inner side surface of the casing 18 is disposed in a coaxial relationship with and is spaced apart from the cylindrical outer side surface of the sleeve 19. However, the damper 13 may be constructed with a greater number of surfaces between which a shearing action occurs. These surfaces may have a configuration other than the illustrated cylindrical configuration.
For example, both the cylindrical inner and outer sides of the sleeve 19 may be disposed in a working chamber formed by the casing 18 and exposed to the liquid damping medium. If this is done, the casing 18 would have a cylindrical radially inner side facing a cylindrical radially inner side of the sleeve 19. The casing 18 would also have a cylindrical radially outer side facing a cylindrical radially outer side of the sleeve 19. The radially inner and outer sides of the casing 18 and sleeve 19 would be exposed to the liquid damping medium in the working chamber. This would result in a first cylinder shear space being formed between the radially inner side of the casing 18 and the radially inner side of the sleeve 19. Similarly, a second cylindrical shear space would be formed between the radially outer side of the casing 18 and the racially outer side of the sleeve 19. Of course, all of the shear surfaces and shear spaces would be enclosed by the casing 18.
It is contemplated that the surfaces between which the shearing action occurs may have a configuration other than the illustrated cylindrical configuration. For example, the shearing action may occur between flat side surfaces. These flat side surfaces may be disposed in a parallel relationship and have one or more bodies of liquid damping medium disposed between them.
The elongate bar 15 formed from a flat strip of metal having a rectangular cross-section which has been formed with a series of helical twists 21. The helical twists on the bar 15 form a cam track. The bar 15 extends through and is coaxial with the clutched drive mechanism 17 and with the inner sleeve 19 of the damper 13. The clutched drive mechanism 17 is arranged to cause rotation of the inner sleeve 19 under the influence of force transmitted from the bar 15 to a circular clutch collar 23. The inner sleeve 19 rotates about the coincident central axes of the inner sleeve, casing 18, clutch collar 23, and bar 15.
The clutch collar 23 is made of thin-walled material, such as press formed metal, and has a slot 24 for slidably receiving the bar 15. As seen in
The helically twisted surfaces of the bar 15 react against the inside faces of the slot 24 in the collar 23 to cause the rotational movement of the collar when the bar is moved longitudinally relative to it (in the direction of arrows A or B in
Side surfaces 24a and 24b (
When the bar 15 is moved in an upward direction (as viewed in
Counterclockwise rotation (as viewed in
The one-way clutched drive mechanism 17 is arranged to allow drive forces to be delivered from the bar 15 to the damper 13 in only one direction of movement of the bar (arrow A). For this, the collar 23 and inner sleeve 19 are provided with a series of complementary opposed ramped teeth 25, 26 respectively, in the manner of a dog clutch. The teeth 25 are integrally formed as one piece with the collar 23. Similarly, the teeth 26 are integrally formed as one piece with the sleeve 19. However, the teeth 25 and/or 26 may be formed separately and connected with the collar 23 and/or sleeve 19.
Rotation of the collar 23 in one direction will drive the sleeve 19 to rotate as the respective teeth 25, 26 of the dog clutch engage (
If desired, the clutched drive mechanism may be constructed so as to rotate the inner sleeve 19 relative to the casing 18 during at least a portion of the opening movement of the lid 12. This may be accomplished by forming the teeth 25 and 26 with a different configuration so that they can transmit rotary motion in two directions (clockwise and counterclockwise) rather than a single direction (counterclockwise as viewed in
The bar 15 is moved downward, that is, in the direction of the arrow A in
Upon initiation of opening movement of the lid 12, the bar 15 is moved upward, in the direction of the arrow B in
When the annular flange 28 on the collar 23 engages the coaxial annular flange 29 on the cap 30 (
Upon subsequent initiation of movement of the lid 12 from the open condition toward the closed condition, a downward force (in the direction of the arrow A in
During continued closing of the lid 12, downward force in the direction of the arrow A in
The bar 15, in this embodiment, is conveniently formed from a standard piece of metal bar, bent to shape. It will be appreciated, however, that other designs could equally well be used for this element. For example, the element could be formed of moulded or extruded plastics and/or have some other cross-sectional shape such as circular, square, triangular, star-shaped or oval. In essence, this element could be of any suitable material. The bar 15 may have any desired cross-section, provided that it is able to deliver rotational drive to the collar. The slot in the collar will of course be suitably shaped to match the cross-sectional shape of the bar element in order to convert its linear movement into rotational movement of the collar.
The amount of damping that a rotary shear damper produces generally varies in dependence upon its speed of rotation. The helical twists 21 formed in the bar 15 may be configured in a variety of different ways to, give different damping effects. In the embodiment of
The collar 23 (
In the linen chest application shown in
As the lid 12 moves from a fully open position to a closed position, the center of gravity CG of the lid moves away from the pivot axis of the hinge H (
Increasing the rate of rotation of the collar 23 with each increment of downward movement of the bar 15 increases the rate of rotation of the inner sleeve 19 relative to the casing 18 with each increment of downward movement of the bar 15. Increasing the rate of rotation of the inner sleeve 19 relative to the casing 18 increases the resistance provided by the viscous damping medium 20 to relative rotation between the inner sleeve and casing. Therefore, as the downward force transmitted from the lid 12 to the bar 15 increases the resistance provided by the damper 13 increases. This results in the rate at which the lid 12 moves toward the closed position remaining substantially constant.
Another possible variation would be for the bar 15 to be formed with two discrete sections of helical twists 21a and 21b (
Other variants could be achieved by providing separate clutched drive mechanisms 17 at either end of the damper 13 working in opposite rotational senses. The helical twists 21 in the bar 15 would then be configured and arranged so as to act with respective collars 23, one at one end of the damper 13 to produce damping during a chose range of movement of the bar 15 in one direction, and the other at the other end of the damper 13 to produce damping during a chosen range of movement of the bar in the opposite direction.
Other options for varying the configuration of the assembly are also possible. It will be noted, for example, that the bar 15 could be arranged to cooperate with two or more dampers 13 in series, rather than just the one shown in the drawings. This could be used to increase the amount of effective damping resistance that the assembly is able to generate, making it suitable for use in heavier duty applications.
It will also be appreciated that by adjusting the geometry of the arrangement, i.e. in this case the positioning of the pivotal mountings 14 and 16 relative to each other and to the hinge of the lid 12 itself, the same basic assembly could be used to cater for a range of different situations, in particular, catering for movable members of different sizes and weights.
It will be further understood that the assembly could be readily adapted to provide movement control in any number of different situations where one member is movable relative to another including, for example, doors, drawers and drop-down flaps.
When the lid 12 is moved from a closed position toward an open position, the damper 13 is ineffective to provide resistance to movement of the bar 15. This is because, when the bar 15 is moved upward (as viewed in
As was previously mentioned, the damper 13 is pivotally mounted on the chest 11 by means of a bracket 14 (
To accommodate pivotal movement of the damper 13, a pivot shaft 18a (
When the lid 12 is moved toward the fully closed position, force is transmitted from the bar 15 to side surfaces 24a and 24b (
When the lid 12 is moved toward the fully open position, force is transmitted from the bar 15 to side surfaces 24a and 24b (
The damper 13 is pivotal about an axis which extends transverse to the central axis of the bar 15. In the illustrated embodiment of the invention the damper 13 is pivotal about an axis which extends perpendicular to and intersects the central axis of the bar 15. In the illustrated embodiment of the invention, the axis about which the damper 13 pivots perpendicular to and intersects coincident central axes of the casing 18 and sleeve 19.
The damping assemblies described above are conveniently designed to work with standard forms of rotary shear damper. However, the assemblies can be modified in many other ways, whether to work with standard or non-standard forms of damper. For example, as seen in
In this arrangement, the groove 321 in the inner sleeve 319 effectively defines a helically extending camming track, whilst the pin 350 on the rod 315 acts as a cam follower. Thus, with the rod 315 being prevented from rotating, relative linear movement between the pin 350 and groove 321 causes relative rotational movement between them. In this arrangement it will be noted that the size of the pin 350 in the longitudinal direction of the rod 315 is significantly less than the pitch of the helical twists in the groove 321. This again allows the possibility for the pitch of the helical twists in the groove 321 to be varied along the length of the rod 315 to give different damping actions in the same way as the variants described above.
A further form of assembly is seen in
Other arrangements will be understood to be possible. In each case, however, the essential point of the movement converting mechanism is that it 15, comprises on the one hand an element with a helically extending camming track and on the other hand an element with a cam follower to engage the track, so that the longitudinal movement of one element will cause rotational movement of the other. The other critical feature of the movement converting mechanism is the manner of engagement between the camming track and cam follower: this is designed to occur over a contact area whose length (in the direction of longitudinal movement) is less than the (smallest) pitch of the helical twists in the camming track. This allows the mechanism to be capable of operating with any amount of variation in the pitch of the helical twists over the length of the track.
Number | Date | Country | Kind |
---|---|---|---|
0310185.4 | May 2003 | GB | national |
This application is a Continuation-in-Part of U.S. patent application Ser. No. 10/555,229 filed Dec. 7, 2006 now abandoned by William Ernest Taylor Valiance and entitled Movements Controlling Means. The aforementioned U.S. patent application Ser. No. 10/555,229 was filed on Apr. 23, 2004 as International Application No. PCT/GB2004/001790. The aforementioned United States Patent Application was filed on May 2, 2003 in the United Kingdom as Application Serial No. 0310185.4. The benefit of the earlier filing date of the aforementioned U.S. patent application Ser. No. 10/555,229 and the aforementioned foreign applications are hereby claimed. The aforementioned U.S. patent application Ser. No. 10/555,229 is hereby incorporated herein in its entirety by this reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
1035298 | Aspegren | Aug 1912 | A |
2527933 | Jakeway | Oct 1950 | A |
2598560 | Kenyon | May 1952 | A |
2723776 | Jacobson | Nov 1955 | A |
2775317 | Sinisterra | Dec 1956 | A |
2842278 | Murphy | Jul 1958 | A |
2869700 | Bowden | Jan 1959 | A |
2890480 | Gregg et al. | Jun 1959 | A |
2955854 | Walton | Oct 1960 | A |
2969560 | Pierie et al. | Jan 1961 | A |
3276762 | Thomas | Oct 1966 | A |
3436973 | Aweimrine | Apr 1969 | A |
3602340 | Budzich et al. | Aug 1971 | A |
3915261 | Jett et al. | Oct 1975 | A |
4051929 | Parfitt | Oct 1977 | A |
4540148 | Jann | Sep 1985 | A |
4782715 | Chevance | Nov 1988 | A |
4799734 | Periou | Jan 1989 | A |
5109571 | Ohshima et al. | May 1992 | A |
5152032 | Davis et al. | Oct 1992 | A |
5165507 | Ohshima | Nov 1992 | A |
5257680 | Corcoran et al. | Nov 1993 | A |
5383303 | Nakanishi et al. | Jan 1995 | A |
6115884 | DeJong et al. | Sep 2000 | A |
6681905 | Edmondson et al. | Jan 2004 | B2 |
6755287 | Hadden et al. | Jun 2004 | B2 |
20020003076 | Taylor | Jan 2002 | A1 |
20030062229 | Mengoli | Apr 2003 | A1 |
20040099494 | Hadden et al. | May 2004 | A1 |
20050103578 | Weiss | May 2005 | A1 |
20060131111 | Nakanishi et al. | Jun 2006 | A1 |
20060169555 | Doornbos | Aug 2006 | A1 |
20070108000 | Derr et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
299 07 099 | Jul 1999 | DE |
201 07 068 | Aug 2001 | DE |
1300328 | Apr 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20110191982 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10555229 | US | |
Child | 13039858 | US |