This disclosure relates generally to a system for treatment of a fluid and for producing microorganisms, and in particular to a system for producing algae biomass. In one arrangement, the disclosure relates to a method of producing microorganisms, such as algae biomass, using a moving bed biofilm reactor (MBBR) system, also referred to as a bioreactor system in this disclosure. The microorganisms produced by the system may be used to remove a pollutant from a fluid utilized in a system, such as a recirculating aquaculture system, by exposing the microorganisms to a fluid containing a pollutant in which the microorganisms uptake the pollutant, then exposing the microorganisms to a condition in order to stimulate the microorganisms to release the pollutant.
There is a rising demand for improvements in treatment of fluids, especially fluids utilized in aquaculture systems. Currently, treatment of fluid occurs through many different unit processes. The different treatment processes utilized to remove pollutants from the fluid are capital intensive and require significant operating cost. Additionally, many different processes are needed in order to remove pollutants including, but not limited to, fecal matter, uneaten food, Nitrogen (N), Phosphorous (P), Potassium (K), Carbon (C), ammonia (NH3), carbon dioxide (CO2). toxic metals, salts, pharmaceuticals, or hormones. Furthermore, the current processes available to remove these pollutants do not provide the opportunity to capture these pollutants, which can be utilized for numerous purposes, but the current processes only remove them.
Aquaculture systems have large volumes of waste discharge which results in a significant challenge as fish producers are required to invest in more capital intensive waste treatment in order to meet tightening discharge requirements. This results in lowering feasibility and profitability of investments in aquaculture systems.
Utilizing a microorganism growing apparatus in connection with a recirculating aquaculture system provides the ability for microorganisms to consume dissolved pollutants and harvest them as a by-product. Since microorganisms such as algae can consume Nitrogen (N), Phosphorous (P), Potassium (K), Carbon (C), ammonia (NH3), carbon dioxide (CO2), toxic metals, salts, pharmaceuticals, and hormones in one process, rather than multiple processes, this simplifies and increases efficiency of aquaculture systems.
MBBR is commonly used as one step of a wastewater treatment process. The MBBR process takes place in a basin, also called a reactor or aeration tank. The basin is open or closed at the top, exposing the water in the basin to open air. The basin is full of small inert plastic pieces called media or carriers that provide surface area for microorganisms to grown on them. The carriers have similar density to the fluid contained in the basin so the carriers will mix throughout the fluid rather than floating or sinking. An aeration grid located in the basin circulates the fluid and carriers. A sieve located at the outlet of the basin prevents the carriers from escaping from the basin when the fluid is removed from the basin. The microorganisms attached to the carriers consume pollutants contained in the fluid. The fluid can then be removed from the basin; thus the pollutant is removed from the fluid.
While MBBR may be used to remove pollutants from a fluid, the microorganisms must first be produced. Cultivating the microorganisms on the carriers remains a challenge. In particular, providing adequate sunlight, carbon dioxide, and nutrients is necessary for the cultivation of the microorganisms. All MBBR systems to date have used no light source. Rather than producing photosynthetic microorganisms, bacteria that need a dark environment have been produced.
For the reasons stated above, and for other reasons which will become apparent to those skilled in the art upon reading and understanding the specification, there is a need in the art for an improved fluid treatment system and an improved method of producing algae and other microorganisms for removal of a pollutant from a fluid.
Thus it is a primary object of the disclosure to provide a method of producing microorganisms to remove a pollutant from a fluid that is efficient.
Yet another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in a system that is simple in design.
Another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid that is inexpensive.
Another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid that has a smaller footprint than other biological systems.
Yet another object of the disclosure is to provide a method of producing microorganisms to efficiently and effectively remove a pollutant from effluent.
Another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid that has a high pollutant removal rate.
Another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in a recirculating aquaculture system that maximizes production of fish on a limited supply of water.
Yet another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in a recirculating aquaculture system that maximizes production of fish on a limited supply of land.
Another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in a recirculating aquaculture system that allows for disease control.
Yet another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in a recirculating aquaculture system that allows for control of the environment in order to maximize fish growth.
Another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in municipal wastewater treatment.
Yet another object of the disclosure is to provide a method of producing microorganisms to remove a pollutant from a fluid utilized in industrial wastewater treatment.
These and other objects, features, or advantages of the present disclosure will become apparent from the specification and claims.
The disclosure relates to a bioreactor system comprising a microorganism growing apparatus and a method of using microorganisms to remove a pollutant from a fluid utilized in a system. The disclosure relates to a method of using microorganisms, including, but not limited to, bacteria, fungi, or algae, to remove a pollutant from a fluid utilized in a system. Furthermore, the disclosure relates to a method of using microorganisms, including, but not limited to, bacteria, fungi, achaea, protozoa/metazoan or algae, to remove a pollutant from a fluid used in a system utilizing a microorganism growing apparatus. Furthermore, the disclosure relates to a method of using microorganisms to remove a pollutant from a fluid used in a system utilizing a microorganism growing apparatus wherein the microorganisms are exposed to a first fluid containing a pollutant wherein the microorganisms are exposed to a first condition, exposing the microorganisms to light and air (which may be a CO2-rich gaseous phase or an O2-rich gaseous phase, among other compositions), and then exposing the microorganisms to a second fluid wherein the microorganisms are exposed to a second condition and the microorganisms are stimulated to release the pollutant.
The figures depict one or more embodiments of a bioreactor system. Furthermore, the figures depict one or more embodiments of a bioreactor system.
In the following detailed description of the embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the disclosure may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, and it is to be understood that other embodiments may be utilized and that mechanical, procedural, and other changes may be made without departing from the spirit and scope of the present disclosures. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present disclosure is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
As used herein, the terminology such as vertical, horizontal, top, bottom, front, back, end and sides are referenced according to the views presented. It should be understood, however, that the terms are used only for purposes of description, and are not intended to be used as limitations. Accordingly, orientation of an object or a combination of objects may change without departing from the scope of the disclosure.
In the arrangement shown, as one example, a bioreactor system 10 using microorganisms 84 to remove pollutants 56 from a fluid 58 (or simply “recirculating aquaculture system” 10 or “system” 10) is formed of any suitable size, shape, and design and is configured to be utilized in association with any type of microorganism growing apparatus 12. The system 10 is utilized for many purposes including, but not limited to, treatment of a fluid 58, treatment of wastewater, rearing of aquatic animals and/or the cultivation of aquatic plants where fluid 58 exchange is limited. Furthermore, the system 10 may be utilized for rearing of aquatic animals including vertebrate or invertebrate. The system 10 may be utilized for any purpose or objective without departing from the scope of the disclosure. In one arrangement, as one example, the system 10 may be utilized for fish production where exchange of fluid 58 is limited. In this arrangement, the system 10 treats the fluid 58 by removing pollutants 56 in order for the fluid 58 to be recirculated throughout the system 10. This provides the ability to maintain clean fluid 58 and to provide a suitable habitat for fish growth and health. In one arrangement, as one example, the system 10 comprises at least one tank 88, a radial flow settler 96, a first header tank 86, a Low Head Oxygenator (LHO) 100, a foam fractionator 102, a sump pump 104, a drum filter 106, a waterfall 108, a microorganism growing apparatus 12, a second header tank 98, and a fluid recirculation system 110.
As stated above, in one arrangement, as one example, the system 10 comprises a microorganism growing apparatus 12 in order to provide for filtering a fluid 58 which is recirculated throughout the system 10. This allows for the fluid 58 to be reused within the system 10 while controlling the environment in order to maximize fish growth and production. In one arrangement, as described in more detail below, the fluid 58 moves from the drum filter 106 of the system 10 to the microorganism growing apparatus 12 through a waterfall 108.
The system 10 may be formed of any suitable size, shape, and design. The system 10 may be formed of any material that is acceptable for treatment of a fluid. Furthermore, the system 10 may be formed of any material that is acceptable for fish production. The system 10 may be formed of any material without departing from the scope of the disclosure.
Plurality of Tanks
In one arrangement, as one example, the system 10 comprises at least one tank 88. In another arrangement, the system 10 comprises a plurality of tanks 88. However, any number of tanks 88 may be used without departing from the scope of the disclosure. For example, the system 10 may comprise one, two, three, four, five, six, seven, eight, nine, ten, or more tanks 88 without departing from the scope of the disclosure. Tanks 88 may be formed of any suitable size, shape and design and are configured to hold and/or supply water and/or other components for operation of the system 10. The at least one tank 88 is configured to hold a fluid 58 among other components including, but not limited to, aquatic animals or aquatic plants. The at least one tank 88 is configured to hold a fluid 58 and any other component without departing from the scope of the disclosure. In one arrangement, as one example, the at least one tank 88 is configured to hold a fluid 58 and fish in order to facilitate efficient fish production.
Each tank 88 utilized in the system 10 may comprise, among other components, an inlet 90, a center drain 92, and a sidewall drain 94. Furthermore, the tanks 88 are formed of any suitable, size, shape, and design. In one arrangement, the tanks 88 are circular in shape with smooth walls and a sloping bottom in order to facilitate in waste concentrating at the bottom and exiting out the center drain 92.
Inlet
In the arrangement shown, as one example, the system 10 comprises at least one tank 88. Each tank 88 utilized in the system 10 may comprise, among other components, an inlet 90 wherein a fluid 58/60/62 enters the tank 88. Inlet 90 may be formed of any suitable size, shape and design and is configured to provide a path for water into the system 10. In the arrangement shown, as one example, the inlet 90 may be located at any position on the outer perimeter of the tank 88 without departing from the scope of the disclosure. As previously stated, the system 10 comprises, among other components, a fluid recirculation system 110. The inlet 90 is connected to at least one of the fluid recirculation system 110 which allows fluid 58 to flow into the tank 88. The inlet 90 may be formed of any suitable size, shape, and design. Furthermore, the inlet 90 may be formed of any material that is acceptable for entry of a fluid 58. In one arrangement, as one example, the inlet 90 is formed of a fluid recirculation system 110, a tube, a filter, a mesh filter, etc. The inlet 90 may be formed of any material without departing from the scope of the disclosure.
Center Drain
In the arrangement, as one example, the system 10 comprises at least one tank 88. Each tank 88 utilized in the system 10 may comprise, among other components, a center drain 92. Center drain 92 may be formed of any suitable size, shape and design and is configured to provide a path for water out of the system 10. In the arrangement shown, as one example, the center drain 92 allows fluid 58 to exit the tank 88 through the center of the tank 88. The center drain 92 may be formed of any material that is acceptable for a fluid 58 to exit a tank 88. Furthermore, the center drain 92 may be formed of any material that is acceptable for a fluid 58 to exit a tank 88. The center drain 92 may be formed of any material without departing from the scope of the disclosure.
Sidewall Drain
In the arrangement shown, as one example, the system 10 comprises at least one tank 88. In the arrangement shown, as one example, each tank 88 utilized in the system 10 may comprise, among other components, a sidewall drain 94. Sidewall drain 94 may be formed of any suitable size, shape and design and is configured to facilitate a path for water to escape the system 10. In the arrangement shown, as one example, the sidewall drain 94 allows fluid 58/60/62 to exit the tank 88 through the side of the tank 88. The sidewall drain 94 may be formed of any material that is acceptable for a fluid 58/60/62 to exit a tank 88. Furthermore, the sidewall drain 94 may be formed of any material that is acceptable for a fluid 58/60/62 to exit a tank 88. The sidewall drain 94 may be formed of any material without departing from the scope of the disclosure.
Radial Flow Settler
As provided above, the system 10 comprises, among other components, at least one radial flow settler 96. The radial flow settler 96 is a passive filtration device that removes waste including, but not limited to, solid waste, from the system 10. Any number of radial flow settlers 96 may be used in the system 10 without departing from the scope of the disclosure. For example, the system 10 may comprise one, two, three, four, five, six, seven, eight, nine, ten, or more radial flow settlers 96 without departing from the scope of the disclosure.
Each radial flow settler 96 utilized in the system 10 is connected to one of the fluid recirculation systems 110 in order to filter waste from the fluid 58 utilized in the system 10. Each radial flow settler 96 operates by utilizing gravity to move fluid 58 through the radial flow settler 96 in order to filter waste including, but not limited to, fecal matter, uneaten food, other pollutants 56, etc.
The radial flow settler 96 may be formed of any material that is acceptable for a passive filtration device. The radial flow settler 96 may be formed of any material without departing from the scope of the disclosure. Furthermore, in one arrangement, as one example, a radial flow settler 96 is located in close proximity to each tank 88 in order to filter pollutants 56 from the fluid 58 being drained from the tank 88.
Header Tank
As provided above, the system 10 comprises, among other components, a header tank 86/98. The header tank 86/98 is a container of fluid 58 utilized to maintain the level of pressure and fluid in the reservoir or tank below. In one arrangement, the system 10 comprises a first header tank 86 and a second header tank 98. In one arrangement, the first header tank 86 is positioned above the microorganism growing apparatus 12 in order to maintain the level of pressure and fluid in the microorganism growing apparatus 12. Also, in one arrangement, the second header tank 98 is located above the plurality of tanks 88 in order to maintain the level of pressure and fluid in the tanks 88. The system 10 may comprise any number of header tanks 86/98 without departing from the scope of the disclosure. For example, the system 10 may comprise one, two, three, etc. header tanks 86/98 without departing from the scope of the disclosure. Furthermore, the header tank 86/98 may be formed of any material without departing from the scope of the disclosure. Additionally, the header tank 86/98 may be formed of any shape, size, or design without departing from the scope of the disclosure.
In one arrangement, as one example, fluid 58 moves from the at least one tank 88 to a first header tank 86 via the fluid recirculation system 110 wherein the fluid 58 moves from the first header tank 86 to the drum filter 106. Also, in one arrangement, fluid 58 moves from the low head oxygenator 100 to a second header tank 98 to the plurality of tanks 88 through the inlet 90 after having pollutants 56 removed from the fluid 58 throughout the system 10.
Throughout the disclosure, reference to a header tank 86/98 refers to a first header tank 86 or a second header tank 98, unless the disclosure specifically states that it is referring to only a specific header tank 86/98.
Low Head Oxygenator (LHO)
As provided above, in one arrangement, the system 10 comprises, among other components, a low head oxygenator (LHO) 100. The LHO 100 is utilized to efficiently and simply add oxygen to fluid 58 utilized in the system 10. Furthermore, the LHO 100 is used to remove nitrogen from the fluid 58 utilized in the system 10. The LHO 100 may be formed of any material without departing from the scope of the disclosure. Additionally, the LHO 100 may be formed of any shape, size, or design without departing from the scope of the disclosure.
In one arrangement, as one example, the fluid 58 moves from the foam fractionator 102 to the LHO 100 in order to filter pollutants 56 from the fluid 58 utilized in the system 10. In one arrangement, the fluid 58 moves from the LHO 100 to a second header tank 98 in order to recirculate the fluid 58 utilized in the system 10.
Foam Fractionator
As stated above, in one arrangement, the system 10 comprises, among other components, a foam fractionator 102. The foam fractionator 102 is utilized to remove pollutants 56 from the fluid 58 utilized in the system 10. The foam fractionator 102 utilizes a chemical process wherein hydrophobic molecules are separated from the fluid 58 using rising columns of foam resulting in separating pollutants 56 from the fluid 58.
The foam fractionator 102 may be formed of any material that is acceptable to remove pollutants 56 from a fluid 58 utilized in a system 10. Additionally, the foam fractionator 102 may be formed of any shape, size, or design without departing from the scope of the disclosure.
In one arrangement, as one example, the fluid 58 moves from the sump pump 104 to the foam fractionator 102 in order to move the fluid 58 throughout the system 10. Furthermore, in one arrangement, the fluid 58 moves from the foam fractionator 102 to the LHO 100.
Sump Pump
As provided above, in one arrangement, the system 10 comprises, among other components, a sump pump 104. The sump pump 104 is utilized to remove the fluid 58 from the microorganism growing apparatus 12. The sump pump 104 may be formed of any material that is acceptable to remove a fluid 58 from the microorganism growing apparatus 12. In one arrangement, as one example, the fluid 58 moves from the microorganism growing apparatus 12 to the sump pump 104 wherein the fluid 58 is transferred to the foam fractionator 102 in order to move the fluid 58 throughout the system 10. Furthermore, the sump pump 104 may be formed of any material without departing from the scope of the disclosure. Additionally, the sump pump 104 may be formed of any shape, size, or design without departing from the scope of the disclosure.
Drum Filter
As provided above, in one arrangement, the system 10 comprises, among other components, a drum filter 106. The drum filter 106 consists of a drum rotating in a tub of fluid 58 and is utilized to filter pollutants 56 from the fluid 58. The drum filter 106 may be formed of any material that is acceptable to filter pollutants 56 from the fluid 58. Additionally, the drum filter 106 may be formed of any shape, size, or design without departing from the scope of the disclosure.
In one arrangement, the fluid 58 moves from a first header tank 86 to the drum filter 106. Additionally, in one arrangement, as one example, the fluid 58 moves from the drum filter 106 to the microorganism growing apparatus 12. In one arrangement, the fluid 58 moves from the drum filter 106 to the microorganism growing apparatus 12 through a waterfall 108. However, the fluid 58 may move from the drum filter 106 to the microorganism growing apparatus 12 via any means without departing from the scope of the disclosure.
Waterfall
In one arrangement, as one example, the system 10 comprises a waterfall 108. The waterfall 108 is utilized to move the fluid 58 utilized in the system 10 from the drum filter 106 to the microorganism growing apparatus 12 in order to filter the pollutants 56 from the fluid 58. However, any other means of moving the fluid 58 from the drum filter 106 to the microorganism growing apparatus 12 is contemplated by the disclosure including, but not limited to, a pipe, a tube, etc. The waterfall 108 is formed of any shape, size, or design without departing from the scope of the disclosure.
Fluid Recirculation System
As provided above, in one arrangement, the system 10 comprises, among other components, a fluid recirculation system 110. The fluid recirculation system 110 is utilized to connect the multiple components of the system 10 to one another in order to allow the fluid 58 utilized in the system 10 to move from one component to the next. In other words, the fluid recirculation system 110 serves as the recirculation system of the system 10. The fluid recirculation system 110 provides the system 10 with the ability to recirculate fluid 58 in order to rear aquatic animals or cultivate aquatic plants. In one embodiment, the fluid recirculation system 110 is comprised of a plurality of pipes. However, the fluid recirculation system 110 may be comprised of any system or apparatus that provides for the exchange or recirculation of fluid without departing from the disclosure. Throughout the disclosure, the fluid recirculation system 110 may be referred to as “a fluid exchange system” 110, “a plurality of pipes” 110, “pipes” 110, or “a recirculation system” 110 without departing from the scope of the disclosure. In one arrangement, as one example, the fluid 58 utilized in the system 10 moves from a tank 88 to the center drain 92 or the sidewall drain 94 to a first header tank 86 through a fluid recirculation system 110, then the fluid 58 moves to the first header tank 86 to the drum filter 106 through a fluid recirculation systems 110.
The fluid recirculation system 110 may be formed of any material that is acceptable to transfer a fluid 58 from one component of the system 10 to another component. In one arrangement, the fluid recirculation system 110 is formed of metal. Additionally, the fluid recirculation system 110 may be formed of any shape, size, or design without departing from the scope of the disclosure.
Water Chiller
In one arrangement, as one example, the system 10 comprises at least one water chiller 112. The at least one water chiller 112 is utilized to chill the fluid 58/60/62 utilized in the system 10. The at least one water chiller 112 may be formed of any shape, size, or design without departing from the scope of the disclosure.
Solids Collection Tank
In one arrangement, as one example, the system 10 comprises at least one solids collection tank 114. The at least one solids collection tank 114 is utilized to collect solids, wastes, debris, and the like in order to prevent the solids, waste, and debris from being circulated throughout the system 10. The at least one solids collection tank 114 may be formed of any shape, size, or design without departing from the scope of the disclosure.
In the arrangement shown, as one example, the system 10 utilizes microorganisms 84 such as bacteria, algae 52, and the like to remove a pollutant 56 from a fluid 60. In one arrangement, the system 10 comprises a microorganism growing apparatus 12, microorganisms 84, a first reservoir 42 (or simply a “reservoir” 42), a first fluid 58 (or simply a “fluid” 58) wherein the microorganisms 84 are cultivated in fluid 58 using a plurality of inert carriers 116 on which microorganisms 84 grow and are contained. Examples of algae 52 growing on carriers 116 are shown in
A method of removing a pollutant 56 from a fluid 60 comprises the steps of: providing a first reservoir 42, filling the first reservoir 42 with a first fluid 58, submerging a plurality of carriers 116 in the first fluid 58 wherein at least a portion of the carriers 116 have been exposed to microorganisms 84, controlling the first fluid 58 within the first reservoir 42 to have a first condition 64 that is conducive to growing microorganisms 84, exposing the microorganisms 84 to the first fluid 58 within the first reservoir 42 wherein the microorganisms 84 are exposed to the first condition 64 and the microorganisms 84 grow and reproduce, providing a second reservoir 44, filling the second reservoir 44 with a second fluid 60 having a concentration of a pollutant 56; controlling the second fluid 60 within the second reservoir 44 to have a second condition 66; exposing a portion of the microorganisms 84 contained on carriers 116 to the second fluid 60 within the second reservoir 44 wherein the microorganisms 84 are exposed to the second condition 66 and the microorganisms 84 consume or uptake the pollutant 56 from the second fluid 60, providing a third reservoir 46, filling the third reservoir 46 with a third fluid 62, controlling the third fluid 62 within the third reservoir 46 to have a third condition 68, and exposing a portion of the microorganisms 84 contained on carriers 116 to the third fluid 62 within the third reservoir 46 wherein the microorganisms 84 are exposed to the third condition 68 and the microorganisms 84 are stimulated to release the pollutant 56 into the third fluid 62. Any number of reservoirs 42/44/46 is hereby contemplated for use.
Microorganisms
In one arrangement, as one example, the system 10 comprises a method for production of microorganism biomass 54 comprising a reservoir 44 configured to contain a fluid 60 wherein the fluid 60 provides nutrients to the microorganisms 84 and one or more inert biomass carriers 116 having a surface area are configured to support growth of the microorganisms 84. Furthermore, the microorganisms 84 may remove a pollutant 56 from the fluid 60. In another arrangement, as one example, the system 10 comprises a microorganism growing apparatus 12 which is capable of cultivating microorganisms 84 to remove a pollutant 56 from a fluid 60.
Any type of microorganism 84 may be utilized in the system 10 or microorganism growing apparatus 12 without departing from the scope of the disclosure. In one arrangement, as one example, the microorganisms 84 may be bacteria or algae 52. Additionally, in one arrangement, the microorganisms 84 may be fungi. Furthermore, in one arrangement, as one example, biofilm based microorganisms 54 (“a microorganism biofilm” 54) may be utilized. A microorganism biofilm 54 may also be referred to as a “microbial biofilm”, a “harvestable microbial biofilm”, or a “biofilm” without departing from the scope of the disclosure. Alternatively, in another arrangement, as an example, suspended microorganism systems may be utilized without departing from the scope of the disclosure.
Algae
The system 10 and microorganism growing apparatus 12 are capable of using algae 52 as the microorganism 84 to remove a pollutant 56 from a fluid 60. In one arrangement, the system 10 is capable of removing pollutants 56 from a fluid 60 by providing a moving bed biofilm reactor 10 having a reservoir 42 wherein the reservoir 42 contains a fluid 60 and wherein the fluid 60 contains nutrients conducive to microorganism 84 growth; providing one or more inert biomass carriers 116 having a surface area configured to support growth of the microorganisms 84; exposing at least a portion of the carriers 116 to the microorganisms 84; submerging the carriers 116 in the fluid 60; and controlling a condition 64 of the fluid 60. In another arrangement, the system 10 and microorganism growing apparatus 12 are capable of removing pollutants 56 from a fluid 60 by providing a first reservoir 42, filling the first reservoir 42 with a first fluid 58; controlling the first fluid 58 within the first reservoir 42 to have a first condition 64 that is conducive to growing algae 52; growing algae 52 using the microorganism growing apparatus 12, exposing the algae 52 to the first fluid 58 within the first reservoir 42 wherein the algae 52 are exposed to the first condition 64, providing a second reservoir 44, filling the second reservoir 44 with a second fluid 60 having a concentration of a pollutant 56; controlling the second fluid 60 within the second reservoir 44 to have a second condition 66; exposing a portion of the algae 52 to the second fluid 60 within the second reservoir 44 wherein the algae 52 are exposed to the second condition 66 and the algae 52 consume or uptake the pollutant 56 from the second fluid 60; exposing the algae 52 to light 50 and air 48, and providing a third reservoir 46, filling the third reservoir 46 with a third fluid 62; controlling the third fluid 62 within the third reservoir 46 to have a third condition 68; exposing a portion of the algae 52 to the third fluid 62 within the third reservoir 46 wherein the algae 52 are exposed to the third condition 68 and the algae 52 are stimulated to release the pollutant 56 into the third fluid 62.
Any species or type of algae 52 may be utilized in the system 10 without departing from the scope of the disclosure. In one arrangement, as one example, the algae 52 may be Chlorella algae 78 or Spirulina algae 80. Additionally, in one arrangement, the algae 52 may be of the type regarded as Generally Regarded As Safe.
As stated above, any type of algae 52 may be utilized in the microorganism growing apparatus 12. In one arrangement, as one example, biofilm based algae 54 (“an algae biofilm” 54) may be utilized. Alternatively, in another arrangement, as one example, suspended algal culture systems may also be utilized without departing from the scope of the disclosure.
In one arrangement, as one example, the algae 52 contains extracellular polymeric substances which enhance absorption of pollutants 56, including, but not limited to, phosphorous, by the algae 52. Additionally, in one arrangement, the algae 52 contains extracellular polymeric substances which protect the algae 52 from toxic effects of high concentrations of pollutants 56, such as phosphorous.
Pollutant
The system 10 provides a method of using microorganisms 84 to remove a pollutant 56 from a fluid 60. The pollutant 56 may be in any form without departing from the scope of the disclosure. In one arrangement, as one example, the pollutant 56 may be dissolved within the fluid 60. Any type of pollutant 56 may be removed from the fluid 60 without departing from the scope of the disclosure. In one arrangement, as one example, the pollutant 56 is Nitrogen (N), Phosphorous (P), Potassium (K), Carbon (C), ammonia (NH3), carbon dioxide (CO2), toxic metals, salts, pharmaceuticals, and/or hormones. Furthermore, any number of pollutants 56 may be within the fluid 60. For example, the fluid 60 may comprise one pollutant 56, two pollutants 56, three pollutants 56, etc. without departing from the scope of the disclosure. In other words, the fluid 60 may comprise multiple types of pollutants 56 without departing from the scope of the disclosure. In one arrangement, as one example, the fluid 60 may comprise all or some of the following types of pollutants: Nitrogen (N), Phosphorous (P), Potassium (K), Carbon (C), ammonia (NH3). carbon dioxide (CO2), toxic metals, salts, pharmaceuticals, and/or hormones.
As stated above, the system 10 may comprise a microorganism growing apparatus 12. A microorganism growing apparatus 12 is formed of any suitable size, shape, and design and is configured to grow any type of microorganism 84 including, but not limited to, algae 52. The microorganism growing apparatus 12 is configured to grow microorganisms 84 in any form without departing from the scope of the disclosure. In one arrangement, as one example, the microorganism growing apparatus 12 is configured to grow algae 52 on the surfaces of a plurality of carriers 116. In the arrangement shown, as one example, for purposes of clarity, the microorganism growing apparatus 12 has a top 20, and a bottom 22. Further description of a microorganism growing apparatus can be found in U.S. Pat. No. 9,932,549 and U.S. application Ser. No. 16/774,168, which are hereby incorporated by reference in its entirety.
As shown in
The microorganism growing apparatus 12 may also include additional components, such as, a pump 82. Any type or form of microorganism growing apparatus 12 may be utilized in the system 10, including, but not limited to, horizontal stationary sheets with microorganisms 84 growing on the surface, vertical stationary sheets with microorganisms 84 growing on the surface, rotating drums with microorganisms 84 growing on the surface, carriers 116 which may take the form of small floating beads, small cylinders, or another solid media with microorganisms 84 growing on their surface without departing from the scope of the disclosure. In the case of carriers 116, algae predominantly grows on the biomass carriers within the fluid 58/60/62.
In one arrangement, as shown, the microorganism growing apparatus 12 comprises a plurality of reservoirs 42/44/46. For example, in one arrangement, the microorganism growing apparatus 12 comprises a first reservoir 42 and a second reservoir 44. In another arrangement, as shown, the microorganism growing apparatus 12 comprises a first reservoir 42, a second reservoir 44, and a third reservoir 46. Any type or form of reservoirs 42/44/46 may be utilized in the microorganism growing apparatus 12 without departing from the scope of the disclosure. Any number of reservoirs 42/44/46 may be utilized in the microorganism growing apparatus 12 without departing from the scope of the disclosure.
As stated above, the microorganism growing apparatus 12 comprises at least one reservoir 42/44/46, among other components. Reservoir 42/44/46 is formed of any suitable size, shape, and design and is configured to support the microorganism growing apparatus 12 and contain a fluid 58/60/62. In one arrangement, as one example, reservoir 42/44/46 is circular, square, or rectangular in shape. However, any other shape or configuration is hereby contemplated for use. Furthermore, the reservoir 42/44/46, and the microorganism growing apparatus 12, may be any size without departing from the disclosure. The reservoir 42/44/46, and the microorganism growing apparatus 12, may be manufactured to be small enough to fit on a shelf for research purposes and the like, or large enough to efficiently and effectively serve a large metropolitan city. Reservoir 42/44/46 may be formed of any type of reservoir 42/44/46 configured to contain carriers 116. In one embodiment, reservoir 42/44/46 may be a container configured to contain a fluid 58/60/62 including, but not limited to, a plastic tub or tote or a trough system. In another embodiment, carriers 116 may be exposed to fluid 58/60/62 and nutrients by spraying fluid 58/60/62 and nutrients on carriers 116 that are resting within the reservoir 42/44/46.
In one arrangement, as shown the microorganism growing apparatus 12 comprises a first reservoir 42, among other components. In another arrangement, as shown, the microorganism growing apparatus 12 comprises a first reservoir 42 and a second reservoir 44, among other components. In another arrangement, as shown, the microorganism growing apparatus 12 comprises a first reservoir 42, a second reservoir 44, and a third reservoir 46. Any number of reservoirs 42/44/46 may be utilized by the microorganism growing apparatus 12 without departing from the scope of the disclosure. For example, the microorganism growing apparatus 12 may comprise one, two, three, four, five, six, seven, eight, nine, ten, or more reservoirs 42/44/46 without departing from the scope of the disclosure. Throughout the disclosure, reference to a reservoir 42/44/46 refers to a first reservoir 42, a second reservoir 44, or a third reservoir 46; unless the disclosure specifically states that it is referring to only one of the reservoirs 42/44/46.
The microorganism growing apparatus 12 may also comprise a mechanism for creating inertia within the reservoir 42/44/46, thus creating movement of carriers 116 within the reservoir 42/44/46. Such a mechanism may comprise a mixing arm. Alternatively, inertia or movement of carriers 116 within the reservoir 42/44/46 may be created by shaking, tilting or pumping a fluid into reservoir 42/44/46. Such movement of carriers 116 may be desirable if carriers 116 have become trapped in a fixed or stationary state resting above or buoyant on the fluid 58/60/62 or sunken below the fluid 58/60/62. When this happens, carriers 116 may be allowed to remain in such a fixed or stationary state, or carriers 116 may be moved by operation of the mechanism for creating inertia or movement. Movement of carriers 116 within the reservoir 42/44/46 is important as movement toward and away from light and interaction with other carriers 116 impacts growth of microorganisms 84. Contact and interaction between carriers 116 causes sloughing off of microorganisms 84 from one carrier 116 to another, thus encouraging the spread of microorganisms 84 between carriers 116 and further encouraging growth of microorganisms 84.
Reservoir
A first reservoir 42 is designed to contain or hold carriers 116, and may be designed to contain the first fluid 58 which contains nutrients conducive to the cultivation of microorganisms 84. Carriers 116 are exposed to microorganisms 84 and may be submerged in first fluid 58, or alternatively carriers may be exposed to the first fluid 58 and nutrients by another means such as spraying the first fluid 58 and nutrients onto carriers 116 resting within the first reservoir 42. The first reservoir 42 may be open at its top 20 such that the surface of fluid 58 and at least a portion of the carriers 116 are exposed to air 48 and light 50. The carriers 116 and/or first fluid 58 contained within the first reservoir 42 are maintained at a first condition 64 that is conducive to cultivation of microorganisms 84. Through exposure of carriers 116 to fluid 58 under a first condition 64 in the presence of nutrients conducive to the growth of microorganisms 84, microorganisms 84 are allowed to grow and reproduce on the surfaces of carriers 116.
The second reservoir 44 is designed to contain or hold carriers 116, and may be designed to contain the second fluid 60 which contains a pollutant 56. The second reservoir 44 and the third reservoir 46 may be located within or near the first reservoir 42. A portion of the carriers 116 containing microorganisms 84 may be moved from other parts of the system 10 to second reservoir 44 where they are exposed to pollutant 56. The second reservoir 44 may be open at its top 20 such that the surface of fluid 60 and at least a portion of the carriers 116 are exposed to air 48 and light 50. The carriers 116 and/or second fluid 60 contained within the second reservoir 44 are maintained at a second condition 66 that induces the microorganisms 84 contained on carriers 116 to consume or uptake pollutant 56. Through exposure of carriers 116 containing microorganisms 84 to fluid 60 under the second condition 66, the microorganisms 84 are allowed to consume or uptake the pollutant 56.
The third reservoir 46 is designed to contain or hold carriers 116, and may be designed to contain the third fluid 62 which provides conditions favorable for the release of pollutant 56 and contains released pollutant 56. The second reservoir 44 and the third reservoir 46 may be located within or near the first reservoir 42. A portion of the carriers 116 containing microorganisms 84 may be moved from other parts of the system 10 to third reservoir 46 where they are induced to release pollutant 56. The third reservoir 46 may be open at its top 20 such that the surface of fluid 62 and/or at least a portion of the carriers 116 are exposed to air 48 and light 50. The carriers 116 and/or third fluid 62 contained within the third reservoir 46 are maintained at a third condition 68 that induces the microorganisms 84 contained on carriers 116 to release pollutant 56. Through exposure of carriers 116 containing microorganisms 84 to fluid 62 under the third condition 68, the microorganisms 84 are allowed to release the pollutant 56.
In one arrangement, as one example, reservoir 42/44/46 may also include a pump 82 which is configured to circulate fluid 58/60/62 within reservoir 42/44/46. The circulation of the fluid 58/60/62 within reservoir 42/44/46 may improve the growth of the microorganisms 84 and the efficiency of the microorganism growing apparatus 12 and system 10. As described in more detail below, pump 82 may be any type of pump 82 such as a paddlewheel.
Pump
The microorganism growing apparatus 12 may comprise, in addition to other components, a pump 82. The pump 82 is formed of any suitable size, shape, and design and is configured to facilitate the movement of water through the system 10. In the arrangement shown, as one example, pump 82 is one or more electric pumps 82, however, any configuration of a pump 82 or pumping system 82 is hereby contemplated for use. Pump 82 may be formed of any size without departing from the disclosure.
Pump 82 is configured to circulate fluid 58 within the first reservoir 42 which may improve the growth of algae 52 and the efficiency of the microorganism growing apparatus 12. Pump 82 can be any type of pump 82 including, but not limited to, an electric pump, a wheel, a paddlewheel or any other type of pump 82 that is configured to circulate fluid 58.
Light Source
A light source 118 is designed to provide desired light conditions in a reservoir 42/44/46. Light source 118 may comprise a lamp suspended above a reservoir 42/44/46 and positioned such that light 50 produced by light source 118 is directed into the reservoir 42/44/46. Any type of lamp using any wavelength of light 50 may be used as a light source 118 without departing from the disclosure. Alternatively, light source 118 may comprise ambient light available in the environment in which the microorganism growing apparatus 12 is located. In one embodiment, light source 118 comprises a combination of natural and artificial light that is photosynthetically active light, where photosynthetically active light refers to the range of visible light that plants can use for photosynthesis (typically having wavelength values within the range of 400 to 700 nm).
Temperature Control Mechanism
A temperature control mechanism 120 is designed to provide desired temperature conditions in a reservoir 42/44/46. Temperature control mechanism 120 may comprise a heat lamp suspended above reservoir 42/44/46 and positioned such that the fluid 58/60/62 in the reservoir 42/44/46 is maintained at a desired temperature. Any type of device capable of heating, cooling, or otherwise maintaining a desired temperature may be used as a temperature control mechanism 120 without departing from the disclosure. Alternatively, temperature control mechanism 120 may comprise a submersible heater submerged in fluid 58/60/62.
Inlet
Fluid 58/60/62 enters reservoir 42/44/46 via an inlet 90. The inlet 90 may be located at any position on the outer perimeter of the reservoir 42/44/46 without departing from the scope of the disclosure. As previously stated, the system 10 comprises, among other components, a fluid recirculation system 110. The inlet 90 is connected to at least one of the fluid recirculation system 110 which allows fluid 58/60/62 to flow into the reservoir 42/44/46. The inlet 90 may be formed of any suitable size, shape, and design. Furthermore, the inlet 90 may be formed of any material that is acceptable for entry of a fluid 58/60/62. In one arrangement, as one example, the inlet 90 is formed of a fluid recirculation system 110, a tube, a filter, a mesh filter, etc. The inlet 90 may be formed of any material without departing from the scope of the disclosure.
Center Drain
A center drain 92 disposed in the bottom 22 of a reservoir 42/44/46 allows fluid 58/60/62 to exit the reservoir 42/44/46 through the center of the reservoir 42/44/46. Center drain 92 may be closed or a stopper may be inserted into center drain 92 to prevent fluid 58/60/62 from exiting reservoir 42/44/46, and center drain 92 may be opened or a stopper may be removed to allow fluid 58/60/62 to exit reservoir 42/44/46. The center drain 92 may be formed of any material that is acceptable for a fluid 58/60/62 to exit a reservoir 42/44/46. Furthermore, the center drain 92 may be formed of any material that is acceptable for a fluid 58/60/62 to exit a reservoir 42/44/46.
The center drain 92 may be formed of any material without departing from the scope of the disclosure.
Sieve
A sieve 122 covers center drain 92 and prevents carriers 116 from exiting reservoir 42/44/46 when fluid 58/60/62 is drained from reservoir 42/44/46. Sieve 122 may comprise a screen, mesh, grate, or any other material that prevents carriers 116 from exiting through center drain 92.
Mechanized Harvesting System
As provided above, the microorganism growing apparatus 12 may comprise, among other components, a mechanized harvesting system 34. The mechanized harvesting system 34 comprises at least one moving belt 36, among other components. The belt 36 may be provided to move microorganisms 84 between the reservoirs 42/44/46 and to provide additional surface area on which microorganisms 84 can grow. The at least one moving belt 36 is formed of any suitable size, shape, and design. The at least one moving belt 36 may be formed of any material without departing from the scope of the disclosure. The at least one belt 36 may be formed of any type of material, including, but not limited to, plastic, metal, non-metal materials, rubber, polyvinyl chloride (PVC), or any other type of material. Furthermore, the at least one moving belt 36 may be referred to as a belt 36, at least one moving belt 36, at least one belt 36, etc. without departing from the disclosure.
In one arrangement, as one example, the at least one belt 36 is controlled by a motor, a gear system and at least one drive shaft wherein the at least one drive shaft rotates the at least one moving belt 36. The rotation of the at least one moving belt 36 allows the at least one moving belt 36 to move through and between the reservoirs 42/44/46 wherein the at least one moving belt 36 is transitioned between a submerged position in which the belt 36 is submerged in a fluid 58/60/62 and an exposed position wherein a portion of the at least one moving belt 36 is not submerged in a fluid 58/60/62. In another arrangement, the at least one moving belt 36 moves through the microorganism growing apparatus 12 wherein the at least one moving belt 36 is transitioned between a submerged position wherein a portion of the at least one moving belt 36 is submerged within the first fluid 58 held within the first reservoir 42, then to an exposed position wherein a portion of the at least one moving belt 36 is not submerged within the first fluid 58 held within the first reservoir 42, then the at least one moving belt 36 moves to a second submerged position wherein a portion of the at least one moving belt 36 is submerged within the second fluid 60 held within the second reservoir 44, then to an exposed position wherein a portion of the at least one moving belt 36 is not submerged within the second fluid 60 held within the second reservoir 44, then the at least one moving belt 36 moves to a third submerged position 74 wherein a portion of the at least one moving belt 36 is submerged within the third fluid 62 held within the third reservoir 46.
The at least one moving belt 36 may move through the microorganism growing apparatus 12 in any type of configuration or movement without departing from the scope of the disclosure. In one arrangement, as one example, the at least one belt 36 moves through the microorganism growing apparatus 12 in a continuous manner or loop between the reservoirs 42/44/46.
In an alternative arrangement, the at least one belt 36 moves in a serpentine manner between submerged and exposed positions. Furthermore, the at least one moving belt 36 may move through the microorganism growing apparatus 12 in any direction or configuration, including, but not limited to, horizontal, vertical, downward, upward, etc. without departing from the scope of the disclosure. In one arrangement, as shown, the at least one moving belt 36 moves through the microorganism growing apparatus 12 in a substantially vertical configuration.
The at least one moving belt 36 may comprise a coating on the at least one moving belt 36 that is capable of binding pollutants 56. The coating may be comprised of any type of material, including, but not limited to, coatings that create temporary ionic, covalent, polar, or hydrogen bonds with a pollutant, or any other type of material. Furthermore, any amount of the coating may be utilized on the at least one moving belt 36 without departing from the disclosure.
As the at least one moving belt 36 moves through the microorganism growing apparatus 12, microorganisms 84 grow on the at least one moving belt 36. The microorganisms 84 that are produced may be harvested or removed from the at least one moving belt 36. The microorganisms 84 may be removed from the at least one moving belt 36 by utilizing any method without departing from the scope of the disclosure. In one arrangement, as one example, the microorganisms 84 may be removed from the at least one moving belt 36 by spraying, scraping, vibration, use of a pneumatic tool or apparatus, a pneumatic process, and the like. One method of harvesting the microorganisms 84 that are produced is to scrape the microorganisms 84 off of the at least one moving belt 36. In one arrangement, the system 10 comprises the step of harvesting the microorganisms 84 by positioning a harvesting blade 38 along the at least one moving belt 36 in order to scrape the microorganisms 84 off of the at least one moving belt 36. Therefore, the mechanized harvesting system 34 comprises a harvesting blade 38.
In one arrangement, as one example, as the at least one moving belt 36 moves through the microorganism growing apparatus 12, algae 52 grows in a biofilm 54 which forms on the at least one moving belt 36. The algae 52 that is produced must be harvested or removed from the at least one moving belt 36. The algae 52 may be harvested or removed from the at least one moving belt 36 by utilizing any method without departing from the scope of the disclosure. One method of harvesting the algae 52 that is produced is to scrape the algae 52 off of the at least one moving belt 36. In one arrangement, the system 10 comprises the step of harvesting the algae 52 by positioning a harvesting blade 38 along the at least one moving belt 36 in order to scrape the algae 52 off of the at least one moving belt 36.
The harvesting blade 38 is formed of any suitable size, shape, and design. The harvesting blade 38 may be formed of any material that is suitable for harvesting or removing microorganisms 84 from the at least one moving belt 36, such as a squeegee, a piece of plastic, a piece of rubber, a piece of metal, or the like. The harvesting blade 38 may be formed of any material without departing from the scope of the disclosure.
The mechanized harvesting system 34 may comprise, among other components, a harvesting reservoir 40. The harvesting reservoir 40 may be formed of any suitable size, shape, and design. Furthermore, the harvesting reservoir 40 may be formed of any material that is suitable for accepting and storing microorganisms 84. The harvesting reservoir 40 may be formed of any material without departing from the scope of the disclosure. The harvesting reservoir 40 may be connected to the harvesting blade 38 or positioned next to the harvesting blade 38 and is configured to receive the microorganisms 84 as the microorganisms 84 are harvested from the at least one moving belt 36.
Fluid
As stated above, the microorganism growing apparatus 12 comprises at least one fluid 58/60/62, among other components. The fluid 58/60/62 may be any type of fluid 58/60/62, including, but not limited to, water, wastewater, effluent, and the like. In one arrangement, the fluid 58/60/62 may be the fluid 58/60/62 utilized in a system 86 which contains a concentration of pollutants 56 including, but not limited to, N, P, K, C, ammonia (NH3), carbon dioxide (CO2), metals, salts, pharmaceuticals or hormones. In another arrangement, as one example, the fluid 58/60/62 is effluent from a feed manufacturer which contains a high concentration of pollutants 56 including, but not limited to, N, P, K, C, toxic metals, salts, pharmaceuticals or hormones. Furthermore, in another arrangement, as one example, the fluid 58/60/62 is municipal water which contains a high concentration of pollutants 56 including, but not limited to, N, P, K, C, toxic metals, salts, pharmaceuticals or hormones.
Conditions
As stated above, the microorganism growing apparatus 12 comprises at least one fluid 58/60/62, among other components, wherein the fluid 58/60/62 is controlled to have a condition 64/66/68. The condition 64/66/68 may be any type of condition 64/66/68 without departing from the scope of the disclosure. For example, the condition 64/66/68 may be an elevated temperature, an elevated temperature compared to another condition 64/66/68 used within the microorganism growing apparatus 12, an elevated temperature within the range of 30-90 degrees Celsius, an illumination using increased light intensity, exposure to a sorbent material, exposure to a phosphorous absorbing material, exposure to a fluid with a high concentration of biological oxygen demand, among other types of conditions 64/66/68 that stimulate algae 52 to release a pollutant 56. The microorganism growing apparatus 12 may comprise any number of reservoirs 42/44/46, fluids 58/60/62, and conditions 64/66/68 without departing from the scope of the disclosure. Therefore, the microorganism growing apparatus 12 may comprise one, two, three, four, five, six, seven, eight, nine, ten, or more reservoirs 42/44/46, fluids 58/60/62, and conditions 64/66/68 without departing from the scope of the disclosure. Throughout the disclosure, reference to a reservoir 42/44/46 refers to a first reservoir 42, a second reservoir 44, or a third reservoir 46, unless the disclosure specifically states that it is referring to only a specific reservoir 42/44/46. Throughout the disclosure, reference to a fluid 58/60/62 refers to a first fluid 58, a second fluid 60, or a third fluid 62, unless the disclosure specifically states that it is referring to only a specific fluid 58/60/62. Throughout the disclosure, reference to a condition 64/66/68 refers to a first condition 64, a second condition 66, or a third condition 68, unless the disclosure specifically states that it is referring to only a specific condition 64/66/68.
The condition 64/66/68 may be a temperature condition that is conducive to the growth of microorganisms 84. For example, a temperature within the range of 13° C.-30° C. is conducive to the growth of algae 52. The condition 64/66/68 may be a light condition conducive to the growth of microorganisms. For example, the condition 64/66/68 may refer to constant (24 hours per day, 7 days per week) exposure to grow lights. In another example, the condition 64/66/68 may refer to a mixture of lighting conditions where inert carriers 116 on which algae 52 is growing may are moved to and away from light source 118.
In Operation
In one arrangement, as one example, the system 10 provides for production of microorganism biomass 54 comprising a reservoir 42 configured to contain a fluid 60 wherein the fluid provides nutrients to microorganisms 84 and one or more inert biomass carriers 116 having a surface area configured to support growth of the microorganisms 84.
In one arrangement, as one example, the system 10 comprises utilizing a microorganism growing apparatus 12 in a system 10 in cultivate microorganisms 84 such as algae 52 in order to filter a fluid 60 utilized in the system 10 to treat a fluid 60 or to provide for rearing of aquatic animals and/or cultivation of aquatic plants. Here, the system 10 comprises the steps of: filing a plurality of tanks 88 with a fluid 58/60/62; moving the fluid 58/60/62 from the plurality of tanks 88 through either the center drain 92 or the sidewall drain 94 of each tank 88 to a first header tank 86 via a fluid recirculation system 110; moving the fluid 58/60/62 from the first header tank 86 to the drum filter 106; moving the fluid 58/60/62 from the drum filter 106 to the microorganism growing apparatus 12 via a waterfall 108; utilizing the microorganism growing apparatus 12 to grow microorganisms 84 and filter the fluid 58/60/62.
Growing microorganisms using a microorganism growing apparatus 12 may comprise the steps of: providing a first reservoir 42, filling the first reservoir 42 with a first fluid 58, submerging a plurality of carriers 84 in the first fluid 58 wherein at least a portion of the carriers 116 have been exposed to microorganisms 84, controlling the first fluid 58 within the first reservoir 42 to have a first condition 64 that is conducive to growing microorganisms 84, exposing the microorganisms 84 to the first fluid 58 within the first reservoir 42 wherein the microorganisms 84 are exposed to the first condition 64 and the microorganisms 84 grow, providing a second reservoir 44, filling the second reservoir 44 with a second fluid 60 having a concentration of a pollutant 56; controlling the second fluid 60 within the second reservoir 44 to have a second condition 66; exposing a portion of the microorganisms 84 to the second fluid 60 within the second reservoir 44 wherein the microorganisms 84 are exposed to the second condition 66 and the microorganisms 84 consume or uptake the pollutant 56 from the second fluid 60, providing a third reservoir 46, filling the third reservoir 46 with a third fluid 62, controlling the third fluid 62 within the third reservoir 46 to have a third condition 68, and exposing a portion of the microorganisms 84 to the third fluid 62 within the third reservoir 46 wherein the microorganisms 84 are exposed to the third condition 68 and the microorganisms 84 are stimulated to release the pollutant 56 into the third fluid 62.
Controlling a condition 64/66/68 may comprise controlling the temperature of the air 48 within a reservoir 42/44/46, controlling the temperature of a fluid 58/60/62 within a reservoir 42/44/46, and/or controlling the light 50 within a reservoir 42/44/46 in order to facilitate growth of the microorganisms 84, induce consumption or intake of a pollutant 56, or induce release of a pollutant 56. Additionally, in one arrangement, as one example, the system 10 further comprises the step of harvesting the microorganisms 84 and using the harvested microorganisms 84 as a foodstuff for human or non-human animal consumption, a fertilizer, a bioplastic, and/or a biofuel.
In order to introduce microorganisms 84 to a particular reservoir 42/44/46, fluid 58/60/62, or condition 64/66/68, carriers 116 on which the microorganisms 84 have grown must be physically transferred from one reservoir 42/44/46 to another reservoir 42/44/46. Carriers 116 containing microorganisms 84 may be transferred by manually straining carriers 116 out of a fluid 58/60/62 contained in one reservoir 42/44/46 and placing them into another reservoir 42/44/46. Alternatively or additionally, microorganisms 84 that have fallen off of the carriers 116 as a result of the motion of fluid 58/60/62 may be strained from the fluid 58/60/62 and manually placed in another reservoir 42/44/46. Alternatively or additionally, microorganisms 84 may be transferred between reservoirs 42/44/46 by a moving belt 36 that travels between reservoirs 42/44/46 and provides additional surface area on which microorganisms 84 can grow.
In one arrangement, the microorganism growing apparatus 12 further comprises the step of: following release of the pollutant 56, the microorganisms 84 are then brought back to the second reservoir 44 to uptake additional pollutants 56 and the process is repeated. Furthermore, in one arrangement, as one example, the microorganism growing apparatus 12 further comprises the step of: starving the microorganisms 84 of the pollutant 56 by exposing the microorganisms 84 to the second condition 66 thereby causing the microorganisms 84 to consume increased amounts of the pollutant 56 from the second fluid 60 in the second reservoir 44. In one arrangement, as one example, the system 10 comprises concentrating the pollutant 56 within the second fluid 60 held within the second reservoir 44. In one example, the microorganism growing apparatus 12 grows the microorganisms 84 on a belt 36 wherein the belt 36 moves in a continuous manner through the reservoirs 42/44/46.
After the fluid 58/60/62 has moved throughout the microorganism growing apparatus 12, the fluid 58/60/62 transitions to the sump pump 104; then the fluid 58/60/62 moves to the foam fractionator 102 for additional filtering; then the fluid 58/60/62 moves to the LHO 100 for additional filtering; eventually the fluid 5860/62 moves to the second header tank 98 and back to a tank 88 through the inlet 90 of the tank 88 where the cycle throughout the system 10 takes place again.
Additionally, the system 10 may further comprise a bacterial or chemical treatment of the fluid 58/60/62. The bacterial or chemical treatment of the fluid 58/60/62 may be any type of bacterial or chemical treatment including, but not limited to, chlorine, chlorine dioxide, algicide, and the like. However, any type of bacterial or chemical treatment of the fluid 58/60/62 may be utilized without departing from the disclosure.
In another arrangement, as depicted in
Algae 52 biomass produced in microorganism growing apparatus 12 is for purposes including but not limited to, food, feed, fuel, and fiber. Algae 52 water treatment includes the positioning of microorganism growing apparatus 12 in systems for standalone biological treatment or pretreatment of a fluid 58/60/62. Algae 52 production and water treatment processes include the conversion of influent water nutrients into algae 52 biomass and processes of algae 52 respiration resulting in oxygenation/oxygen addition into fluid 58/60/62.
Carrier 116 and vessel 42/44/46 characteristics have an effect on the system's 10 nutrient removal capacity, filling fraction (concentration or density of carrier relative to vessel), microbial biocenosis (microbial community composition on carrier), and fouling propensity (algal cell accumulation amount and rate on carriers). Carrier 116 characteristics include, but are not limited to, carrier 116 geometry, dimensions, material composition, porosity, and surface texture. Any carrier 116 that has the ability to be buoyant or “free” in hydraulic flow in reactor vessel 42/44/46 and has the ability to accumulate algae biofilm 54 that detaches into a suspended phase is suitable for use in microorganism growing apparatus 12. Carrier 116 characteristics also include carrier filling fraction and biofilm microbial biocenosis. A carrier 116 filling fraction of less than 70% fill has been found to provide favorable conditions for the growth of algae 52. A carrier 116 biofilm microbial biocenosis equal to or greater than 50% algae has been found to provide favorable conditions for the growth of algae 52.
As depicted in
Reactor vessel 42/44/46 characteristics include, but are not limited to, vessel 42/44/46 size, geometric design, and dimensions. Light source 118 characteristics include type of light, frequency, wavelength, amount of light 50, duration, dimensions, and proximity of light source 1186 relative to vessel 42/44/46. Flow 126 characteristics include direction of flow 126, pattern of flow 126, and speed of flow 126. Pump 82 characteristics include type of pump 82. Solids filter 124 characteristics include filter 1247 mechanisms, methodology, and flocculation agents and methodology. Harvesting characteristics include harvesting mechanism and methodology.
In another arrangement, as depicted in
The container 130 may be formed of any suitable size, shape, material, and color. In one arrangement, as one example, the container 130 may be clear to allow light 50 from an artificial or natural light source 118 to penetrate the container 130 and encourage the growth of microorganisms 84. Additionally or alternatively, the container 130 may be open to allow photosynthetic light 50 from an artificial or natural light source 118 to penetrate the container 130 and encourage growth of microorganisms 84.
Benefits of System
The system 10 has many benefits and advantages including, but not limited to, providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62 that is efficient; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62 that is simple in design; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62 that is inexpensive; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62, harvesting the microorganism 84, and using the microorganism 84 as a foodstuff for human consumption; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62, harvesting the microorganism 84, and using the microorganism 84 as a foodstuff for animal consumption; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62 that is capable of meeting current pollutant 56 discharge limits; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62 that has a smaller footprint than other biological systems; providing a method of using a microorganism 84 to efficiently and effectively remove a pollutant 56 from effluent; providing a method of using a microorganism 84 to remove a pollutant 56 from a fluid 58/60/62 that has a high pollutant 56 removal rate.
Furthermore, the system 10 provides a method to maximize production of aquatic animals and/or aquatic plants on a limited supply of water; providing a method to maximize production of aquatic animals and/or aquatic plants on a limited supply of land; providing a method to achieve disease control; providing a method to control the environment in order to maximize growth of aquatic animals and/or aquatic plants. These and other benefits and advantages of the system 10 are apparent from the specification and claims.
This patent application claims priority to U.S. Provisional Patent Application No. 62/986,879 filed on Mar. 9, 2020, the entirety of which is incorporated herein fully by reference.
Number | Date | Country | |
---|---|---|---|
62986879 | Mar 2020 | US |