The entire disclosure of Japanese Patent Application No. 2004-045683 filed on Feb. 23, 2004, including specification, claims, drawings and summary, is incorporation herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a moving blade and to a gas turbine using the moving blade.
2. Description of the Related Art
In a gas turbine, a plurality of disks are arranged in the axial direction of a rotary shaft, and in the circumference of each of the disks a plurality of moving blades are circumferentially embedded adjacent to each other. Stationary vanes provided on a casing, which covers the moving blades, are arranged between adjacent rows of moving blades. A high-temperature combustion gas flows over the moving blades and the stationary vanes, to thereby rotatively drive the moving blades. Accordingly, the rotary shaft is rotated to thereby drive, for example, a compressor and a power generator.
Since high-temperature combustion gas is introduced into the gas turbine, the moving blades and the stationary vanes are exposed to high temperature. In order to cope with high temperature, the moving blade assumes the form of a cooled blade in which cooling medium flow paths are formed (as disclosed in, for example, Japanese Patent Application Laid-Open (kokai) Nos. 2002-129905 and H01-63605).
When the rotary shaft of the gas turbine is rotatively driven, the disks provided on the rotary shaft are rotatively driven. At this time, a row of moving blades moves between adjacent rows of stationary vanes provided on the casing, which is disposed around the rotary shaft. When high-temperature combustion gas flows over the moving blades and the stationary vanes, vortexes are generated at trailing ends of the blades and vanes. The vortexes cause a force to act on the blades and vanes in such a manner as to press the blades and vanes toward the front and rear of the gas turbine and toward the respectively adjacent blades and vanes. As a result, the blades and vanes vibrate.
The conventional moving blades have been found to involve the following problem. When the natural frequency of the stationary vanes disposed on the casing coincides with the natural frequency of the moving blades, the moving blades and the stationary vanes resonate, and the magnitude of vibrations of the blades and vanes increases. As a result, high cycle fatigue (HCF) potentially arises in the moving blades and the stationary vanes.
In view of the foregoing, an object of the present invention is to provide a moving blade whose vibration is suppressed, as well as a gas turbine using the same.
To achieve the above object, a moving blade of the present invention comprises an airfoil portion to be exposed to high-temperature gas; a platform for supporting the airfoil portion; a shank extending downward from the platform; a blade root portion extending downward from the shank and to be embedded in a rotary shaft; and a cooling air flow path extending through the blade root portion, the shank, the platform, and the airfoil portion for channeling cooling air. In the moving blade, an arcuately depressed portion is formed on the shank.
By virtue of the above configuration, strength distribution in the shank becomes uniform. Thus, while the shank maintains fixed strength, stress induced by exposure to high-temperature gas and vibration of the moving blade can be dispersed uniformly in accordance with the strength distribution, thereby suppressing concentration of the stress on the shank.
Preferably, in the moving blade of the present invention, the arcuately depressed portion extends from the lower end of the platform to the blade root portion.
By virtue of the above formation of the arcuately depressed portion, strength distribution in the shank becomes uniform along the direction extending from the lower end of the platform to the blade root portion. Thus, stress induced by exposure to high-temperature gas and vibration of the moving blade can be dispersed uniformly in accordance with the strength distribution along the direction extending from the lower end of the platform to the blade root portion, thereby suppressing concentration of the stress on the shank.
Preferably, in the moving blade of the present invention, the arcuately depressed portion extends from a leading end of the shank to a trailing end of the shank.
By virtue of the above formation of the arcuately depressed portion, strength distribution in the shank becomes uniform along the direction extending from the leading end of the shank to the trailing end of the shank. Thus, stress induced by exposure to high-temperature gas and vibration of the moving blade can be dispersed uniformly in accordance with the strength distribution along the direction extending from the leading end of the shank to the trailing end of the shank, thereby suppressing concentration of the stress on the shank.
Preferably, in the moving blade of the present invention, the depth of the arcuately depressed portion is greatest at a central portion of the shank.
By virtue of the above formation of the arcuately depressed portion, strength distribution in the shank becomes uniform. Thus, stress induced by exposure to high-temperature gas and vibration of the moving blade can be dispersed uniformly in accordance with the strength distribution, thereby suppressing concentration of the stress on the shank.
Preferably, in the moving blade of the present invention, the arcuately depressed portion is formed on the same side as the concave pressure side of the airfoil portion.
By virtue of the above formation of the arcuately depressed portion, the profile of the moving blade can be readily designed while maintaining compatibility in position between the arcuately depressed portion and the routing of the cooling air flow path, so that the cost of manufacture can be reduced.
Preferably, in the moving blade of the present invention, a portion of the shank opposite the arcuately depressed portion is located on the inside of a straight line extending in contact with a side end of the platform and a side end of the blade root portion.
The above structural feature allows the moving blades to be arranged adjacent to each other without interference of their shanks.
Preferably, in the moving blade of the present invention, a lower portion of the shank is rendered flat.
Provision of the flat lower portion of the shank frees a lower portion of the shank from variation in strength and thus allows the shank to readily have fixed strength. Therefore, stress induced by centrifugal force associated with rotation of the moving blade can be prevented from concentrating on the shank.
Preferably, in the moving blade of the present invention, an edge of the leading end and an edge of the trailing end of the shank on a side where the arcuately depressed portion is formed are chamfered.
By virtue of the above chamfering, variation in strength is reduced at the leading and trailing ends, thereby mitigating local tensile stress induced, at the edge of the leading end and the edge of the trailing end on the side where the arcuately depressed portion is formed, by exposure to high-temperature gas and vibration of the moving blade.
To achieve the above object, a gas turbine of the present invention comprises a plurality of moving blades of the present invention. The moving blades are arranged in a circumferentially adjoining condition on the circumference of each of disks arranged axially on a rotary shaft.
By virtue of the above arrangement of the moving blades, strength distribution in the shank of each of the moving blades becomes uniform. Thus, stress induced by vibration of the moving blade can be dispersed uniformly in accordance with the strength distribution, thereby suppressing concentration of the stress on the shank.
To achieve the above object, a gas turbine of the present invention comprises a plurality of moving blades mounted on a rotary shaft in a circumferentially adjoining condition. Each of the moving blades comprises an airfoil portion to be exposed to high-temperature gas; a platform for supporting the airfoil portion; a shank extending downward from the platform; a blade root portion extending downward from the shank and to be embedded in the rotary shaft; and a cooling air flow path extending through the blade root portion, the shank, the platform, and the airfoil portion for channeling cooling air. In the gas turbine, a seal pin is provided in a spacing between the shanks of the adjacent moving blades for preventing leakage of cooling air from a blade root portion side to an airfoil side; an arcuately depressed portion is formed on the shank of each of the moving blades; and vibration of each of the moving blades is suppressed in such a manner that the seal pin serves as a spring system while the airfoil portion, the platform, the shank, and the blade root portion serve as a mass system.
By virtue of the above configuration, the moving blades function as respective dampers so as to prevent coincidence between the natural frequency of the moving blades and that of stationary vanes, thereby preventing resonance of the moving blades and the stationary vanes.
Various other objects, features and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description of the preferred embodiment when considered in connection with the accompanying drawings, in which:
An embodiment of the present invention will next be described in detail with reference to the drawings. In the drawings, the arrow “Flow” indicates the flowing direction of combustion gas.
A gas turbine includes a compressor, a combustor, and a turbine. Compressed air discharged from the compressor and fuel are mixedly combusted in the combustor so as to generate combustion gas. The thus-generated combustion gas is introduced into the turbine to thereby drive the turbine. The turbine powers the compressor as well as the generator for generating electricity.
Rows of gas turbine moving-blades 1 shown in
As shown in
An edge of a leading end 3e and an edge of a trailing end 3f on the first side of the shank 3 on which the arcuately depressed portion 6 is formed are chamfered into respective chamfered portions 7. By virtue of formation of the chamfered portions 7 at such positions, variation in strength is reduced at the leading end 3e and the trailing end 3f, thereby mitigating local tensile stress induced, at the edge of the leading end 3e and the edge of the trailing end 3f, by exposure to high-temperature gas and vibration of the moving blade 1. As shown in
The profile of the shank 3 will be described in detail.
As shown in
As shown in
As shown in
As shown in
As shown in
Accordingly, the arcuately depressed portion 6 is formed in such a manner as to extend from the lower end 4b of the platform 4 to the blade root portion 2 and to be depressed most at the central level of the shank 3. Also, the arcuately depressed portion 6 is formed in such a manner as to extend from the leading end 3e to the trailing end 3f of the shank 3 and to be depressed most at the center of the shank 3 with respect to the direction. By virtue of the above-mentioned profile of the shank 3, strength distribution in the shank 3 becomes uniform. Thus, stress induced by exposure to high-temperature gas and vibration of the gas turbine moving-blade 1 can be dispersed uniformly in accordance with the strength distribution along the direction extending from the lower end 4b of the platform 4 to the blade root portion 2 and along the direction extending from the leading end 3e of the shank 3 to the trailing end 3f of the shank 3, thereby suppressing concentration of the stress on the shank 3. By virtue of the feature that the depth of the arcuately depressed portion 6c is the greatest at a central portion of the shank 3, strength distribution in the shank 3 becomes uniform. Thus, stress induced by exposure to high-temperature gas and vibration of the gas turbine moving-blade 1 can be dispersed uniformly in accordance with the strength distribution, thereby suppressing concentration of the stress on the shank 3.
The gas turbine moving-blade 1 is formed from a columnar-crystalline-Ni-based heat-resistant alloy that contains Cr, Co, and the like (refer to Japanese Patent No. 3246377).
A plurality of the gas turbine moving-blades 1 having the above profile are circumferentially disposed adjacent to each other, on the circumference of a disk disposed in a gas turbine, while a spacing 18 is formed between the adjacent gas turbine moving-blades 1 as shown in
As shown in
Next, the configuration of adjacent gas turbine moving-blades will be described.
As shown in
The groove 17 of the first gas turbine moving-blade 11 is defined by a first wall 17a, which extends inboard of the platform 14 while being directed from a side toward the airfoil portion 15 to a side toward the blade root portion 12; a second wall 17b, which continues from the first wall 17a and extends downward substantially in parallel with a side wall 14a of the platform 14; and a third wall 17c, which continues from the second wall 17b and extends substantially horizontally to the side wall 14a of the platform 14. Even when the seal pin 16 is biased, in the groove 17, toward the blade root portion 12, the seal pin 16 is in contact with the walls 17a, 17b, and 17c of the groove 17 and with a side wall 24a of a platform 24 of the second gas turbine moving-blade 21. Accordingly, the adjacent first and second gas turbine moving-blades 11 and 21 do not come in direct contact with each other. Vibration of the first gas turbine moving-blade 11 is propagated to the adjacent second gas turbine moving-blade 21 via the seal pin 16, and vibration of the second gas turbine moving-blade 21 is propagated to the first gas turbine moving-blade 11 via the seal pin 16.
When the first gas turbine moving-blade 11 and the second gas turbine moving-blade 21 are rotatively driven as a result of rotation of the rotary shaft of the gas turbine, centrifugal force directed toward the airfoil portion 15 is imposed on the seal pin 16 accommodated in the groove 17. Accordingly, the seal pin 16 is pressed toward the airfoil portion 15 while being accommodated in the groove 17. At this time, the first and second gas turbine moving-blades 11 and 21 are vibrating. Specifically, the first and second gas turbine moving-blades 11 and 21 vibrate in such a direction as to move toward and away from each other. When, in vibration, the adjacent first and second gas turbine moving-blades 11 and 21 move away from each other, the above-mentioned centrifugal force causes the seal pin 16 to be pressed toward the airfoil portion 15 while being accommodated in the groove 17. When, in vibration, the first and second gas turbine moving-blades 11 and 21 move toward each other, the first and second gas turbine moving-blades 11 and 21 in contact with the seal pin 16 apply force to the seal pin 16 in such a manner as to press the seal pin 16 inboard of the groove 17; i.e., toward the shank 13, against the above-mentioned centrifugal force. Accordingly, while being supported by an unillustrated disk via the blade root portion 12, the first gas turbine moving-blade 11 is also supported by the seal pin 16 interposed between the first and second gas turbine moving-blades 11 and 21.
Therefore, the seal pin 16 and the first gas turbine moving-blade 11 form such an elastic structure that the seal pin 16 having a spring constant K1 supports the airfoil portion 15, the platform 14, the shank 13, and the blade root portion 12, which collectively have a mass M1. The first gas turbine moving-blade 11 can be considered to be a damper having a natural frequency.
In the elastic structure in which the seal pin 16 having the spring constant K1 supports the airfoil portion 15, the platform 14, the shank 13, and the blade root portion 12, which collectively have the mass M1, a natural frequency fm1 of the first gas turbine moving-blade 11 can be represented by the following Eq. (1).
fm1=(½π)·{(K1)/M1}1/2 (1)
As is apparent from Eq. (1), by means of adjusting the spring constant K1 and the mass M1, the natural frequency fm1 of the first gas turbine moving-blade 11 can be determined so as to avoid resonance with vibration of a stationary vane.
As in the case of the above-mentioned first gas turbine moving-blade 11, a plurality of gas turbine moving-blades provided on a rotary shaft can be caused to function as respective dampers so as to avoid the coincidence between the natural frequency of the gas turbine moving-blades and that of stationary vanes, thereby preventing resonance of the gas turbine moving-blades with the stationary vanes.
The above embodiment is described while mentioning a gas turbine moving-blade in which an arcuately depressed portion is provided so as to avoid the coincidence between its natural frequency and that of a stationary vane. However, the present invention is not limited thereto. For example, the present invention may be applied to a moving blade of a steam turbine. Even in this case, actions and effects similar to those mentioned above with respect to the gas turbine are yielded.
Number | Date | Country | Kind |
---|---|---|---|
2004-045683 | Feb 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2912223 | Hull, Jr. | Nov 1959 | A |
3266770 | Harlow | Aug 1966 | A |
3527543 | Howald | Sep 1970 | A |
3902820 | Amos | Sep 1975 | A |
3950113 | Albrecht | Apr 1976 | A |
4076436 | Slator et al. | Feb 1978 | A |
4548531 | Seitelman et al. | Oct 1985 | A |
4917574 | Dodd et al. | Apr 1990 | A |
6086329 | Tomita et al. | Jul 2000 | A |
6171058 | Stec | Jan 2001 | B1 |
6174135 | Lee | Jan 2001 | B1 |
6190128 | Fukuno et al. | Feb 2001 | B1 |
6390775 | Paz | May 2002 | B1 |
Number | Date | Country |
---|---|---|
64-63605 | Mar 1989 | JP |
09-303107 | Nov 1997 | JP |
11-022404 | Jan 1999 | JP |
2000-291407 | Oct 2000 | JP |
2000-345805 | Dec 2000 | JP |
2002-129905 | May 2002 | JP |
2002-129905 | May 2002 | JP |
2002-213205 | Jul 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20050186074 A1 | Aug 2005 | US |