The present disclosure relates generally to the field of winches.
Winches are pulling or lifting devices, which pull in or let out a line. Winches function by winding or unwinding the line that is coiled around a rotating drum. A winch fairlead is commonly used to direct the line as it winds or unwinds along the drum. Typically, the line should be at a shallow angle, 20 degrees or less, from perpendicular to the drum axis. When this is achieved, friction is minimized between the line and the internal edges of the fairlead that surround the line. Most efficiently, the line is exactly perpendicular to the drum axis. Thus, a problem arises if the line is connected to a load that is at a wide angle, such as when the load is at an angle of 45 degrees, causing the line to be at a 45 degree angle from perpendicular to the drum axis. Friction created between the line and the fairlead reduces the pulling capacity of the winch and shortens the life of the line (can cause the line to fray, for example).
In a first aspect, the disclosure provides a winch assembly including a mount attachable to a vehicle, and a guide attached to the mount; including a winch having a drum for winding and unwinding a line, and a motor for driving the drum about a winding axis, wherein the drum has a helical groove for receiving the line as it is wound. A frame connects to the first and second end of the drum, and is adapted to move relative to the guide so as to synchronize movement of the drum along the winding axis so that the line is aligned with the helical groove during winding and unwinding. A rod is attached to the frame and generally parallel to the winding axis, and passes through a hole in the guide, allowing the movement of the drum along the winding axis but preventing the frame from rotating about the winding axis is disclosed.
In a second aspect, the disclosure provides a winch assembly wherein walls of the helical groove extend radially a distance greater than a diameter of the line, and wherein an internal surface of the guide comprises a helical ridge that engages with the helical groove. A third aspect provides a winch wherein the line lays in the helical groove and radially extends beyond walls of the helical groove, and wherein an internal surface of the guide comprises a helical ridge that engages with the line in the helical groove. Furthermore, the guide and winch may pivot freely. The guide may contain bearings to accomplish pivoting and may also include a locking pin to hold the winch in a home position.
Additionally, in a preferred embodiment, the mount includes an extendable and retractable arm, whereby the guide and winch can be extended a greater distance from the vehicle to facilitate pivoting. The extendable and retractable arm may be motorized or manually operated. Furthermore, the invention may include a torsion spring attached to the guide and the mount for holding the winch in a home position when a load is not pulling the winch. In another embodiment, the winch assembly includes batteries.
In another embodiment, the winch assembly includes a mount attachable to a vehicle, a guide attached to the mount with a fairlead, a winch with a drum for winding and unwinding a line, and a motor for driving the drum about a winding axis. The drum has a helical groove for receiving the line as it is wound, and the line passes through the fairlead. The winch assembly also includes a frame connected to the first and second end of the drum, and a threaded rod rotatably attached to the frame and generally parallel to the winding axis, and passing through a threaded hole in the guide, such that as the threaded rod is rotated about an axis parallel to the winding axis, the frame is moved along the winding axis and the frame is prevented from rotating about the winding axis. The movement of the frame by rotation of the threaded rod is configured to synchronize movement of the drum along the winding axis so that the line passing through the fairlead is aligned with the helical groove during winding and unwinding.
Further aspects and embodiments are provided in the foregoing drawings, detailed description and claims.
The following drawings are provided to illustrate certain embodiments described herein. The drawings are merely illustrative and are not intended to limit the scope of claimed inventions and are not intended to show every potential feature or embodiment of the claimed inventions. The drawings are not necessarily drawn to scale; in some instances, certain elements of the drawing may be enlarged with respect to other elements of the drawing for purposes of illustration.
The following description recites various aspects and embodiments of the inventions disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.
As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure, and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
As used herein, “threaded” is meant to refer to a helical ridge on the outside of an object, or on the inside of a cylindrical hole.
As used herein, “home position” is meant to refer to the drum axis being perpendicular to the winch mount.
Winches in their most basic form have been used for many years to help hoist or move objects. Winches can be used in a variety of settings. They are used on boats, on cars, in a building, on a construction site, indoors or outdoors. They are extremely useful because they help users to maneuver often large or heavy equipment or materials in such a way that would be extremely difficult to do manually.
Winches are used to pull in or let out tension on a line, such as a cable or rope. There exists a wide variety of winches comprised of different materials. One of the challenges associated with winches is that pulling capacity may be diminished when a load is not perpendicular to the drum. Typically, this challenge is addressed by using a fairlead that includes rollers to reduce the friction associated with off-angle loads (loads that result in the winch line being more than 20 degrees from perpendicular with the winch drum axis, for example). However, even with a fairlead that includes rollers, the winch capacity for off-angle loads is reduced, and the pressure and friction of the fairlead may result in increased wear on the winch line and/or the winch components. Depending on the environment and scenario in which a winch is used, one of the common use cases for winches, for example, is for a winch to be placed on a vehicle (e.g., all-terrain vehicle (ATV), truck, utility vehicle, and the like). Typically, the winch is placed at the front (or back) of the vehicle. This placement may be ideal for some use cases. A vehicle, however, may or may not be able to be situated directly in the front or the back of the load to be pulled. Furthermore, the vehicle may or may not be able to be situated on the same level as the load to be pulled. When using the winch, it is most efficient when directly facing the load it is pulling because friction is reduced and efficiency is increased. Thus, it is beneficial for a winch to have the ability to tilt, rotate, and/or twist in order to face the load being pulled so that it is directly facing the load to be pulled.
It is appreciated that pulling off-angle can reduce the efficiency and ability of winches. Pulling off-angle, however, may be particularly problematic for winches that include a winch-line-guide that directs the line to wind along the length of the rotatable drum to avoid bunching or catching the line on the rotatable drum. In one embodiment, a motor powers the drum to rotate about an axis within a frame. A fairlead of the winch-line-guide may be connected to and may simultaneously move along the length of one or more elongated rods, which extend longitudinally within the frame in substantially parallel relation to the drum axis. As the fairlead moves along the rod, the line passes through the fairlead such that the fairlead directs the line to wind uniformly around the drum. When pulling off-angle, however, the fairlead may, at times, be unable to move along the drum length due to the force of the load working against the movement direction of the fairlead.
Another challenge associated with winches is that pulling capacity may be diminished when a load is not being pulled from the center of the winch drum. Even when a winch swivels to face the load it is pulling, the efficiency of the winch is reduced wherein the winch is not pulling from the center of the winch drum. Because guides typically travel the length of the drum to wind or unwind the line on and off the drum, the winch is only at its most efficient pulling capacity briefly, when the guide is at the center of the drum. The winch pulls least efficiently when the guide is at a drum end.
This problem is addressed by keeping the line at the center of the winch, preferably the point at which the winch is anchored to another object. For example, right above the mount. When the guide is attached to the mount, the line remains at the center, and is able to pull most efficiently. In a preferred embodiment, the guide is attached to the mount, and line is unwound or wound onto the drum via the fairlead. As the guide is attached to the mount, the drum moves through the guide from one end to another, facilitating the winding or unwinding of the line.
In order for the drum to move through the guide, in a preferred embodiment, the line lays in the helical groove of the drum, and extends radially beyond the helical drum. Furthermore, the guide is threaded, or has a mating pitch, such that it meshes with the line, allowing the drum to move from one end point to another through the guide as the motor spins the drum. In another embodiment, however, the walls of the helical groove of the drum extend radially beyond the line, such that the walls of the helical groove mesh with the threaded guide, acting like a track, such that the drum moves through the guide.
Furthermore, when a winch is able to swivel or pivot towards the object it is pulling and thus reduce friction of the line against the fairlead, the winch may run into or hit the vehicle to which it is attached or mounted if it is not far enough away from the vehicle. In other words, if the winch pivots from the center of the drum, and the distance the winch is placed from the vehicle is not the same as or greater than the distance from the middle of the drum to the end of the drum, the winch will not be able to pivot 90 degrees. For example, very often an individual will attach a winch to a vehicle such as an ATV or truck. Often, a user attaches a winch to the front of their vehicle. This is useful for transporting a winch and using the winch. However, wherein a winch is closely mounted to the front of a vehicle, it would be unable to swivel very far because it will hit or come into contact with the vehicle or become obstructed by the vehicle. Therefore, wherein a winch is made to swivel or pivot, it is useful for a winch to be able to extend away from the vehicle. Then, when a user needs to use the winch at an angle, they can move the winch such that it is sufficiently far enough from the vehicle that it can swivel and not be obstructed by the vehicle. Once the user is finished using the winch at an angle, they can retract the winch to a position that is closer to the vehicle. Storing a winch closer to the vehicle is advantageous because it less likely that the winch will get hit or come into contact with another object thereby damaging the winch or the object that it comes into contact with.
Embodiments and methods disclosed herein may improve winch performance when the load is at a wide angle to the fairlead. The present devices, systems, and methods describe a winch that includes a swivel mechanism. As described herein, the winch assembly may swivel to orient itself in a way that minimizes or eliminates off-angle loads. In other words, the winch assembly may rotate towards a load that the winch is pulling, such that there is less friction on the line when being wound onto the drum. This allows for increased efficiency and increases the capacity of the winch to pull heavier items or loads. The winch may be made to swivel towards the object that it is pulling in a variety of ways. In one example, the winch swivels freely. In another, it comprises sensors.
The winch may extend and retract in a variety of ways. For example, in one embodiment the winch comprises a pin, a winch mount base, and an extendable arm that nests inside the winch mount base. In another embodiment, the winch mount base nests inside the extendable arm. The user may remove the pin, extend the extendable arm, and reinsert the pin, thus allowing a user to manually extend the extendable arm. In another embodiment, the winch comprises a crank handle in place of a pin that when cranked, extends the extendable arm. In another example, the winch is automated and can be controlled via a remote device. In one example, the remote device is a smart phone running an app. In yet another embodiment, the winch is controlled mechanically and manually, such that a user can decide to manually extend or retract the winch or use a controller to extend or retract the winch. In another embodiment, the extendable winch assembly includes a button on the winch that when pressed mechanically extends or retracts the extendable arm.
In one embodiment, wherein the extendable arm nests inside the winch mount base, the extendable arm rests on a track. In a preferred embodiment, the track includes a motor such that the extendable arm is mechanically extended or retracted. However, in a less preferred embodiment, there is no motor and the user manually moves the extendable arm along the track to extend or retract the winch. In another embodiment, wherein the winch mount base nests inside the extendable arm, the winch mount base comprises a track such that the extendable arm can extend and retract.
In a preferred embodiment, the extendable winch assembly includes an extendable arm that nests inside the base of the winch mount. The base may attach to the underside of the vehicle, or to the front, back or side. It may attach with screws or glue.
Wherein the winch swivels freely, the winch mount may comprise ball bearings where the winch mount is attached to the extendable arm, such that it can spin, swivel, or pivot freely when a load pulls on the winch line at an off angle. In another example, the winch mount comprises roller bearings.
In one embodiment the winch assembly may include sensors in proximity to the orifice on the fairlead which sense/detect pressure. When pressure exceeds a predetermined threshold, the winch assembly is instructed to swivel, tilt, and/or rotate in the direction that will most relieve the sensed pressure. Thus, sensors may be used to allow the fairlead to operate without decreasing efficiency.
In some embodiments, the winch mount (to which the winch is mounted, for example) may oscillate, rotate, balance, pivot, turn, tilt, teeter, vacillate, hover, hang, sway, and/or dither. The winch may include one or more spacers, insertions, and/or attachments between the rotatable drum and the winch mount. Some embodiments of the winch mount may include one or more protrusions, attachments, flanges, extensions, shelves, depressions, grooves and/or other surface discontinuities that interact with springs. In one embodiment, the winch mount may include one or more folds, bends, creases, and/or curvatures such that the degree to which the rotatable drum tilts is as much as 180° from rest. The winch mount may also rotate as much as 360° around the center pivot, according to one embodiment.
In one embodiment, the winch assembly is electric. In another embodiment, the winch assembly is hydraulic. The winch assembly may also include batteries. In one embodiment, the line is synthetic rope, and in another, the line is a steel cable.
In another embodiment, the winch comprises sensors in proximity to the orifice on the fairlead which sense/detect pressure. When pressure exceeds a predetermined threshold, the winch is instructed to swivel, tilt, and/or rotate in the direction that will most relieve the sensed pressure. Thus, sensors may be used to allow the fairlead to operate without decreasing efficiency.
The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of various embodiments. However, it will be apparent to those skilled in the art having the benefit of the present disclosure that the various aspects of the various embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the various embodiments with unnecessary detail.
Now referring to
In another embodiment, however, both the rod 50 and the guide 3 are threaded. This allows for two tracks, which allows the drum to be more robustly moved laterally. In this embodiment, the guide hole 11 through which the rod 8 passes is threaded, and the side of the guide 3 that comes into contact with the drum is also threaded. Furthermore, in this embodiment, preferably the line 6 extends radially beyond the walls of the helical groove 12. However, in another embodiment, the rod is threaded, the guide is threaded, and the walls of the helical groove extend radially beyond the line, such that they come into contact and mesh with the guide, instead of the line meshing with the guide.
In another embodiment, the winch assembly 1 includes two motors. One motor spins the drum, and another motor spins gearing that rotates the rod such that the winch travels laterally through the guide. Furthermore, the winch assembly may be remote controlled. In a preferred embodiment, the remote control is a cell phone running an app. Alternatively, the winch assembly may comprise buttons on the winch that allow a user to control the winch, such as turning it off and on.
All patents and published patent applications referred to herein are incorporated herein by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. Nevertheless, it understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1973446 | Resenquist | Sep 1934 | A |
3690409 | Brauss | Sep 1972 | A |
5636648 | O'Brien | Jun 1997 | A |
6511089 | Kores, Sr. | Jan 2003 | B1 |
6523806 | Bartal | Feb 2003 | B2 |
9719632 | Weidner | Aug 2017 | B2 |
9908754 | Hall | Mar 2018 | B2 |
10640344 | Hall | May 2020 | B1 |
20170166422 | Mahnken | Jun 2017 | A1 |
20170320711 | Hampton | Nov 2017 | A1 |
20180093869 | Hall | Apr 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20200354201 A1 | Nov 2020 | US |