1. Field of the Invention
The present invention relates generally to devices for ejecting bulk materials from trailers. More particularly, the present invention relates to a detachably attachable moving headboard trailer ejector and floor cleaning apparatus for use with a self-unloading trailer having a front end, a rear end, side walls, and either a reciprocating slat conveyor floor or a conveyor belt floor.
2. Description of the Related Art
Many bulk commodities and aggregates are transported throughout the United States by various types of trailers, including transport semi-trailers. Materials commonly moved include, but are not limited to, dirt, sand, rock, grain, etc. A truck operator is paid to move material from one location to another—the more material an operator can move in a given period of time, the more profitable the operator's business will be.
Many transport trailers used by operators are of the “self-unloading” type. Self-unloading trailers use one of several forms of “moving floors” to eject material from the trailer. Moving floors come in various forms including, but not limited to, reciprocating slat floors and conveyor belt floors. By their automation, these floors substantially decrease the time required to eject material from trailers compared to manual ejection methods. One time consuming drawback of a moving floor, however, is that after ejecting transported material from the trailer, some amount of residual transported material often remains on the trailer floor—material that must be manually swept or shoveled out of the trailer. Removing residual material from a trailer takes time, which increases the total transport time and reduces the operator's profit.
Heretofore there has not been available a moving headboard trailer ejector system or apparatus with the advantages and features of the present invention.
The present invention relates to a detachably attachable moving headboard trailer ejector and floor cleaning apparatus for use with a self-unloading trailer having a front end, a rear end, side walls, and either a reciprocating slat conveyor floor or a conveyor belt floor. The invention comprises, in one embodiment, a base, a panel sweeper, one or more panel sweeper support members, a means for traversing the panel sweeper, a tether bar, side flanges, and a base flange.
In use, the invention is placed in the front end of a self-unloading trailer and the trailer is loaded with material; when the moving floor is activated and material is ejected from the trailer, the invention “travels” or transverses along the moving floor and pushes the material out of the trailer's back end. The rubber flanges ensure a snug fit within the trailer and keep post ejection residual material at a minimum. After ejection is complete, the apparatus may be pushed back into place or pulled back into place via the tether bar. The invention may be used with most self-unloading trailers and does not require retrofitting of trailers for proper use. The means for traversing the panel sweeper may include a stationary door, a hinged door, a horizontally sliding panel, or a vertically sliding panel and gives the operator access to the trailer area behind the apparatus without the need to climb over the apparatus and risk injury.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention illustrating various objects and features thereof.
I. Introduction and Environment
As required, detailed aspects of the present invention are disclosed herein, however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed structure.
Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as orientated in the view being referred to. The words, “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the aspect being described and designated parts thereof. Forwardly and rearwardly are generally in reference to the direction of travel, if appropriate. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
The present invention features an ejector system 2 which mounts within an existing trailer 4 and is used to unload material from within that trailer. The present invention may be included in new trailers as a complete ejector trailer system, or it may be retrofitted into existing trailers implementing a “moving floor” or reciprocating slat floor system.
II. Preferred Embodiment or Aspect Ejector Trailer System 2
The embodiments discussed herein are merely illustrative of specific manners in which to make and use the invention and are not to be interpreted as limiting the scope of the instant invention.
Referring to the drawings in detail,
A base flange 400 and two side flanges 500 are mounted onto the panel sweeper at the bottom and sides of the panel sweeper respectively. The surface of the base flange 400 may be of any area up to and including the same area of the panel sweeper 300 face. In the preferred embodiment, the flanges are made of rubber; the flanges may, however, be formed of any other appropriate material capable of achieving the desired form and performing the desired function. This allows the ejector system 2 to handle material 6 of a high moisture content, as shown in
In the present embodiment, the flanges are mounted onto the panel sweeper via a plate and screw assembly 600; the flanges may also be mounted by any other appropriate means including, but not limited to a plate and rivet assembly, adhesives, or mounting the flanges between the panel sweeper and support members. A means for traversing the panel sweeper may include an access door 700, such as a hinged door, a horizontally sliding panel, or a vertically sliding panel and provides access to the trailer area behind the apparatus without the need to climb over the apparatus and risk injury. A tether bar 800 is mounted between the support members. In an alternate embodiment, the tether bar may be mounted on the back portion of the panel sweeper itself. In the preferred embodiment, the tether bar is made of aluminum; the tether bar may, however, be formed of any other appropriate material capable of achieving the desired form and performing the desired function including, but not limited to, plastic, metal, or wood.
After a load 6 has been completely emptied from the trailer 4, the winch 14 and tether 12 pull the ejector system 2 back to its starting position at the end wall 7 of the trailer. During this retraction phase, if the ejector system 2 encounters an obstruction or material which has somehow wound up between the ejector 2 and the end wall 7 of the trailer, the ejector system will tip over rearwards (toward the end wall 7 of the trailer). This feature accomplishes three things; (1) it notifies the user that an obstruction is present; (2) it prevents the obstruction from jamming between the ejector 2 and the trailer 4; and (3) it allows the user quick access to remove the obstruction.
If the ejector system 2 tips over and the obstruction is removed, the ejector may be tipped back to its upright position or it may be retracted while laying down. If it is retracting while laying down, the tether 12 will pull the ejector system 2 back to its vertical starting position upon reaching the starting position. A plastic flange may be affixed to the bottom surface of the rectangular base member 100 to reduce friction between the ejector system 2 and the reciprocating slats 10 while the ejector system is being retracted.
As stated previously, this system is suited for bulk flowing materials. These flowing materials tend to stick to the surfaces of trailers during normal unloading processes. The reciprocating floor combined with the ejector system 2 including the floor flange 400 and wall flanges 500 allows the present system to produce a better method for ejecting flowing material from a trailer. The flanges actively remove residual material from the walls and floor while the load is ejected, thereby negating much of the necessity to clean the trailer out between loads. This results in a more efficient unloading process.
III. Alternative Embodiment: Locking Base Flange 402
In an alternative embodiment of a ejector system 52, the user may opt to load a trailer 4 with a load that protrudes above the top of trailer walls 5, thus potentially causing materials to lodge between top of floor & crossbows connecting trailer walls, forcing materials behind the ejector system 52 while it travels underneath the crossbows, such as with a load of tree limbs. In such an instance, the user may fold the flange 402 up against the panel sweeper 300 and lock the flange in place using a locking mechanism 54, such as a pair of tabs.
Because of the flexible nature of the base flange 402, the flange could simply be tucked under a pair of tabs 54, as shown in
An alternative system for lifting and locking the base flange 402 includes a fully adjustable winch and strap system with a hook, wherein the hook engages the base flange 402 to sweeper panel 300 to keep in an upright locked & loaded position. The winch lifts the flange and secures it in place, and is further capable of lowering the flange 402 back into its original position when desired. A number of winches may be used, wherein the straps and hooks are affixed to the flange at various points along the length of its front end.
IV. Alternative Embodiment Side Panel Protectors 104 and/or Ratchet Straps 106 with Hooks 108
V. Alternative Embodiment Releasable Restraining Chain 124 and Hook 122
VI. Alternative Embodiment with Extension 302
Alternatively, the extension 302 may be connected directly to the sweeper panel face 300, such as via screws or other fasteners. This essentially places the extension against the sweeper panel face 300, but the extension 302 will extend above where the original face 300 extended.
VII. Alternative Embodiment with Locking Panels 356
In
It is to be understood that while certain embodiments and/or aspects of the invention have been shown and described, the invention is not limited thereto and encompasses various other embodiments and aspects.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/465,650, filed May 7, 2012, now U.S. Pat. No. 9,126,520, issued Sep. 8, 2015, which is a continuation-in-part of and claims the benefit of U.S. patent application Ser. No. 12/184,470, filed Aug. 1, 2008, now abandoned, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3578186 | Thomas | May 1971 | A |
3953170 | Webb | Apr 1976 | A |
3998343 | Fors | Dec 1976 | A |
4015727 | Rezac | Apr 1977 | A |
4162735 | Lewis | Jul 1979 | A |
4632628 | Kress et al. | Dec 1986 | A |
4927316 | Kordel | May 1990 | A |
5096356 | Foster | Mar 1992 | A |
5170968 | Helmner | Dec 1992 | A |
5314290 | Lutz et al. | May 1994 | A |
5445260 | Foster | Aug 1995 | A |
5901874 | Deters | May 1999 | A |
6085948 | Putze | Jul 2000 | A |
6357578 | Shelby | Mar 2002 | B1 |
6837668 | Brown | Jan 2005 | B1 |
7147423 | Golden et al. | Dec 2006 | B2 |
7510071 | Foster | Mar 2009 | B2 |
8100625 | Lutz | Jan 2012 | B2 |
20080253857 | McJunkin | Oct 2008 | A1 |
20100028114 | Butterfield | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150375661 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13465650 | May 2012 | US |
Child | 14848023 | US | |
Parent | 12184470 | Aug 2008 | US |
Child | 13465650 | US |