The present invention relates generally to electromagnetic devices, and more particularly to electromagnetic devices with moving magnet and planar coil.
Conventional moving-coil microphones generally contain a fixed permanent magnet with a suspended coil (the moving coil). A diaphragm is affixed to the coil when there is no internal tension and no external force. When a sound from the environment reaches the microphone, the sound pressure causes the diaphragm (and the affixed coil) to vibrate. The motion of the coil in the magnetic field generates motional electromotive force (EMF). A voltage is then output according to the sound pressure, completing the acoustic-electric conversion. Conventional moving-coil microphones, however, are difficult to be miniaturized because of the complexity of their internal components.
Conventional condenser microphones may be capable of being miniaturized. But the capacitance of conventional condenser microphones is typically in the range of picofarads (pF or 10−12 F), giving rise to high impedance of condenser microphones. The high impedance causes severe attenuation during transport, rendering long-distance transmission impossible. To address this problem, an impedance converter is normally needed. A field-effect transistor (e.g., a junction gate field-effect transistor or J-FET) typically serves as an impedance converter. Although a J-FET can be made very small, its thermo characteristics and susceptibility to electromagnetic interferences may diminish the quality of condenser microphones.
In general, in an aspect, the invention provides an electromagnetic device that includes a housing, a planar coil disposed inside the housing, and a magnetic diaphragm disposed inside the housing, wherein the plane of the planar coil is substantially in parallel with the plane of the magnetic diaphragm, wherein the planar coil is separated from the magnetic diaphragm, and wherein the magnetic diaphragm is moveable in the presence of an exterior pressure.
Implementations of the invention may provide one or more of the following features. The planar coil includes multiple layers, whereby magnetic fields generated from the multiple layers are in the same orientation. The electromagnetic device further includes a spacer positioned between the planar coil and the magnetic diaphragm. The magnetic diaphragm contains at least one stoma. The housing contains at least one stoma. The magnetic diaphragm is made of Nd—Fe—B micro-powder film. The planar coil is in the form of a wound-up vortex or polygon.
Implementations of the invention may also provide one or more of the following features. The magnetic diaphragm includes an exterior ring structure, an interior area, and at least one connector connecting the exterior ring structure and the interior area, wherein the interior area is magnetized.
In general, in another aspect, the invention provides a method of making magnetic diaphragm, the method including packaging magnetic powders, mixing the magnetic powders into a melted polymer, and infiltrating the magnetic powders into the polymer film through thermal pressing and stretching.
In general, in yet another aspect, the invention provides a method of making magnetic diaphragm, the method including mixing magnetic powders within a gel, coating the gel onto a first polymer film, coating the gel onto a second polymer film, combining the first coated polymer film with the second coated polymer film, and magnetizing the combined film.
Implementations of the invention may provide one or more of the following features. The coating of the first and second polymer films is via a sol-gel or rejection gel method. The first and second polymer films are made of the same polymer material. The first and second polymer films are made of different polymer material. The first and second polymer films are combined with the coated surfaces facing inside.
Implementations of the invention may also provide one or more of the following features. The method of making magnetic diaphragm further includes forming at least one stoma on the magnetic diaphragm by etching. The method of making magnetic diaphragm further includes forming at least one stoma on the magnetic diaphragm by etching.
Various aspects of the invention can provide one or more of the following capabilities. Impedance of the electromagnetic device can be lowered when compared with prior techniques. A moving-magnet electromagnetic device can be packaged in small form factor. Ease of manufacturing of electromagnetic devices can be increased. Quality of miniature electromagnetic devices can be improved.
These and other capabilities of the invention, along with the invention itself, will be more fully understood after a review of the following figures, detailed description, and claims.
Embodiments of the invention can provide an electromagnetic device with a moving magnet and a planar coil. Possible advantages of the new electromagnetic devices include low impedance (reducing, or even possibly eliminating the need of impedance converters), capability of long-distance transmission, potential of being miniaturized, low-cost and easy manufacturing, and high quality. Other embodiments are within the scope of the invention.
Referring to
The sensitivity of the microphones illustrated in
With the trend of microphones being miniaturized, the magnetic diaphragm 120 will preferably get smaller and smaller in size. To improve the smoothness of the microphone, the magnetic diaphragm 120 can have at least one stoma 150. The stoma 150 can help reduce the damping of the magnetic diaphragm 120, giving rise to improved sensitivity. In some embodiments, the magnetic diaphragm 120 is made of a Neodymium-Iron-Boron micro-power film (Nd—Fe—B film). Nd—Fe—B firm can help to further improve the sensitivity of the microphone.
The planar coil 110 can be arranged in various layout forms to fit the overall profile of the microphone. In some embodiments, the planar coil can be in the form of a thickly wound-up vortex, rectangle, polygon, or oval, etc. In some other embodiments, mechanisms, such as laser etching or chemical etching, can be utilized to generate miniaturized coils.
The planar coil 110 can also be laid in multiple layers.
A multi-layer planar coil can be manufactured using a multilayer sheet. The multilayer sheet can preferably have conductive layers sandwiched between insulating layers. An example of a multilayer sheet suitable for this purpose is a multilayer Printed Circuit Board (PCB). Mechanisms, such as laser or chemical itching, can be used to form the desired wiring patterns (e.g., a planar vortex) on the conductive layers. Connecting the multi-layer planar coil to a power source at or near the outside edges 412 and 424 can help reduce the complexity of overall structure and increase the ease of manufacturing. It can also help reducing the variation or fluctuation of the electromagnetic characteristics at the connection points and thus help increasing the quality and reliability of the system.
Comparing to conventional microphones where the magnet is fixed, the magnet illustrated in
Because of their unique internal structure, the microphones illustrated in
EM=Blv,
where B is the magnetic field strength; l is the length of coil perpendicular to the magnetic field; and v is the velocity of the moving coil in the direction perpendicular to the magnetic field. In contrast, the microphones illustrated in
EI=(ΔB/Δt)S,
where B is the magnetic field strength; t is the time, and S is the area of the planar coil; and where (ΔB/Δt) represents the variation rate of magnetic field strength when the magnetic diaphragm vibrates in the presence of the sound pressure.
The magnetic diaphragms can be manufactured in various processes. In one process, magnetic powders (e.g., Nd—Fe—B micro-powders) are first packaged then mixed into melted polymer. The Nd—Fe—B micro-powders are then infiltrated into the polymer film through thermal pressing and stretching.
In another process, magnetic powders (e.g., Nd—Fe—B micro-powders) are first evenly mixed within a gel. The gel is then coated onto a first polymer film via various methods, such as the sol-gel method or the rejection gel method. The first coated polymer film can then be combined with a second polymer film. The second polymer film can be made of the same polymer material as the first polymer film; or, it can be made of a different polymer material. The second polymer film can also be coated with Nd—Fe—B micro-powders. Preferably, the second coated polymer film is affixed to the first coated polymer film with the two coated surfaces facing inside. The layered polymer film can then be magnetized to generate a strong magnetic diaphragm.
The magnetic diaphragms can also be manufactured from other materials, such as metal laminates. One example of such diaphragm is illustrated in
In other embodiments, the diaphragm itself can be non-magnetic; but a separate magnet can be attached to the diaphragm. When the diaphragm vibrates, the attached magnet can vibrate and thus generate electromotive force (EMF) within the magnetic field.
It is noted that one or more references may be incorporated herein. To the extent that any of the incorporated material is inconsistent with the present disclosure, the present disclosure shall control. Furthermore, to the extent necessary, any material incorporated by reference herein should be disregarded if necessary to preserve the validity of the claims.
While the description above refers to the invention, the description may include more than one invention. In addition, although the description above sometimes uses the term “microphone,” the description is not so limited. Other electromagnetic devices are also possible.
Number | Name | Date | Kind |
---|---|---|---|
6532834 | Pinto et al. | Mar 2003 | B1 |
6600400 | Andou et al. | Jul 2003 | B1 |
6789429 | Pinto et al. | Sep 2004 | B2 |
7116796 | Reenberg | Oct 2006 | B1 |
7302077 | Bachmann et al. | Nov 2007 | B2 |
7502486 | Shin et al. | Mar 2009 | B2 |
20030128847 | Smith | Jul 2003 | A1 |
20070071274 | Andersen et al. | Mar 2007 | A1 |
20070237352 | Andersen et al. | Oct 2007 | A1 |
20080031487 | Sorensen et al. | Feb 2008 | A1 |
20080063235 | Takewa | Mar 2008 | A1 |
20090257617 | Ikeda et al. | Oct 2009 | A1 |
20100278371 | Hanada | Nov 2010 | A1 |
20110013799 | Fang et al. | Jan 2011 | A1 |
20110274298 | Yang | Nov 2011 | A1 |
20110274309 | Doh et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
101711006 | May 2010 | CN |
201571198 | Sep 2010 | CN |
Number | Date | Country | |
---|---|---|---|
20120294474 A1 | Nov 2012 | US |