1. Field of the Invention
The invention relates to an application of a MP3 player, and more particularly to a MP3 player capable of measuring heartbeats, cumulatively recording the heartbeats in a flash memory, and using an Auto Run program and a USB interface to quickly and conveniently transmit the heartbeat data to a personal computer for performing analyses and evaluations, in addition to the function of playing music.
2. Description of the Related Art
The full name of MP3 is Movie Picture Experts Group (MPEG) 1 Layer 3 which belongs to a level of MPEG-1 with an original goal of reducing a load consumed in an information media transmission. The audio data of MP3 belongs to one of the acoustic wave data compressed into a MP3 1 format. The wave data of approximately 50 MB to 60 MB is compressed into 4 MB by this special compression method, and its tone quality is almost the same as that of CD music, but it provides almost ten times of the data storage capacity. Therefore, a MP3 music CD have a storage capacity of more than ten music CDs. If one music CD album can play 60 minutes of music, then one MP3 music CD can play several tens of hours of music data, and the MP3 player serves as a small music cabinet for providing users a portable music player, and thus the MP3 player and music CD become a new trend.
At present, more and more people listen to MP3 music while doing exercises (such as walking or jogging), and our heartbeats will change significantly before and after doing exercises, and the measurements of these variables during the exercises are very important. To maximize the benefits of the exercises, the exercisers must increase their heartbeat up to 60% of the maximum heartbeat rate. If the heartbeat rate rises up to its maximum during exercises, it will be harmful to our health, and thus a convenient and accurate heartbeat meter is necessary for our fitness and exercises.
There are various kinds of traditional fitness heartbeat measuring devices such as the pulse meters disclosed in U.S. Pat. Nos. 4,409,983, 4,224,948, 4,120,269 and 5,807,267. However, these traditional pulse meters adopt infrared detectors, exhaust sensors, piezo pressure sensors or optical sensors for detecting pulses, wherein the infrared sensors have less precision, since these sensors may be affected by the conditions of external environment easily.
In U.S. Pat. No. 5,807,267, a detector is installed at the bottom of a wrist band for detecting the heartbeat of a radial artery, but a piezo pressure sensor or an optical sensor is used as a sensor assembly to press closely to a radial artery for the detection, and such detecting method may be affected by the conditions of the external environment, and an accurate measuring position has a significant effect on the measured value. For medical professionals, they may use these instruments to detect accurate measurements, but for general athletes or consumers, they have difficulties to use such instruments to accurately measure the position. Furthermore, the exercisers have to carry both the MP3 and the wrist band with them for the application, which is very inconvenient, and traditional pulse detectors usually do not come with recording and analyzing functions and cannot be connected to a personal computer. The traditional pulse detectors cannot completely record and provide the change of heartbeat data of a user within several days, a week, or a month, and these pulse detectors cannot be used for analyzing and evaluating the physical conditions of the users. In summation, traditional pulse detectors require further improvements.
Therefore, it is a primary objective of the present invention to provide a MP3 player capable of transmitting pulse data that skillfully integrates a MP3 player and a pulse detector for measuring heartbeats (or pulses) while listening to music anytime and anywhere.
Another objective of the present invention is to provide a MP3 player capable of transmitting pulse data that accumulates and stores the detected heartbeat and uses a built-in Auto Run program and a USB interface connected to a personal computer to automatically send the heartbeat recorded in a certain period of time to the personal computer for analyses and evaluations and further provide correct personal health data of the users.
A further objective of the present invention is to record the heartbeats in the personal computer and send the heartbeat data to a doctor's personal computer at a remote end through the Internet and a platform server to achieve the effect of further evaluations and bidirectional communications.
In order to achieve the above-mentioned objectives, a MP3 player capable of transmitting pulse data includes:
Referring to FIGS. 1 to 5, a pulse MP3 player 100 according to a preferred embodiment of the present invention comprises the following elements:
A casing 10 is made of a non-conducting material and comes with the size of a general MP3 player and includes an LCD display device 20 disposed at the front of the casing 10.
A voltage detecting unit 50 is installed in the casing 10 for detecting a voltage frequency change caused by the blood circulation of a human body, and the voltage detecting unit 50 comprises a plurality of inductors 51 and a filter shaping and amplifying circuit 52 as shown in
A set of right hand electrode (R) comprises a first conductive rubber 11 and a second conductive rubber 12 respectively installed at the upper and lower surfaces of the right side of the casing 10 and electrically coupled to the voltage detecting unit 50 in the casing 10 for pressing and touching two fingers of a user's right hand.
Similarly, a set of left hand electrode (L) comprises a third conductive rubber 13 and a four conductive rubber 14 respectively installed at the upper and lower surface of the left side of the casing 10 and electrically coupled to the voltage detecting unit 50 in the casing 10 for pressing and touching two fingers of a user's left hand as shown in
In
A digital signal processor (DSP) 60 includes a MCU featuring high speed, high bit rate, data index shift command, and programmable digital signal processing capabilities for the voice, communication, image processing, and data control applications. In this preferred embodiment, the digital signal processor 60 can execute a program stored in a flash memory 70 for decoding a MP3 file or a compressed audio file in the control of playback operations to produce corresponding audio signals and provides a general MP3 playback function. Further, the digital signal processor 60 can receive the signal sent from the foregoing voltage detecting unit 50, and the signals are accumulated to obtain a user's heartbeats (or pulses). Of course, such heartbeat can be displayed on the LCD display device 20.
Since the present pulse detectors such as the aforementioned wrist band can detect heartbeats only, but cannot perform further recording and analysis, therefore such pulse detectors cannot provide the information about the pulse change of a user within a week or a month and it is difficult to evaluate a user's physiological conditions and health.
To overcome the foregoing shortcomings, the present invention uses a flash memory 70 as a memory unit that includes partitioned memory blocks with at least one area for storing an Auto Run program and other areas used as general memories, and the flash memory 70 can store audio data and produce audio signals after the data are decoded and processed by the digital signal processor 60.
In
In
A USB interface 40 is installed at a side of the casing 10 as shown in
In
In addition, the casing 10 includes a microphone (MIC) plug hole 15 disposed at an appropriate position, but the plug hole 15 is an optional item and not a necessary item.
The present invention makes use of the foregoing technical measures for the following improvements:
1. The invention uses two fingers of each of a user's left and right hands to press and touch the electrodes (L), (R) of the four conductive rubbers 11, 12, 13, 14 of the pulse MP3 player 100, and thus providing a convenient application and a good contact for accurately measuring heartbeats.
2. The present invention uses the Auto Run program stored in the flash memory 70, such that when the pulse MP3 player 100 is connected to the personal computer 101, all heartbeat data measured in a certain period of time will be displayed on the personal computer 101 immediately to facilitate users to understand their physiological conditions. Further, the data collected by the users can be obtained as shown in
Many changes and modifications in the above-described embodiment of the invention can, of course, be carried out without departing from the scope thereof. Accordingly, to promote the progress in science and the useful arts, the invention is disclosed and is intended to be limited only by the scope of the appended claims.