The present disclosure relates generally to optical fiber connectors, and more specifically to optical fiber connectors having push-pull tabs.
The prevalence of the Internet has led to unprecedented growth in communication networks. Consumer demand for service and increased competition has caused network providers to continuously find ways to improve quality of service while reducing cost.
Certain solutions have included deployment of high-density interconnect panels. High-density interconnect panels may be designed to consolidate the increasing volume of interconnections necessary to support the fast-growing networks into a compacted form factor, thereby increasing quality of service and decreasing costs such as floor space and support overhead.
In communication networks, such as data centers and switching networks, numerous interconnections between mating connectors may be compacted into high-density panels. Panel and connector producers may optimize for such high densities by shrinking the connector size and/or the spacing between adjacent connectors on the panel. However, in a high-density panel configuration, adjacent connectors and cable assemblies may obstruct access to the individual connectors. Such physical obstructions may impede the ability of an operator to insert and remove cables and the connectors.
According to one aspect of the present disclosure, there is provided an optical fiber connector assembly comprising a connector having an outer housing and an inner housing, the inner housing extending beyond a rear end of the outer housing, the outer housing having a first protrusion and the inner housing having a second protrusion positioned at a distance from the first protrusion. The optical fiber connector assembly further comprises a push-pull tab having a main body and an extender coupled to the main body. The main body has a plurality of walls forming a passageway configured to receive the connector. The plurality of walls includes a first wall having a window sized according to the distance between the first protrusion and the second protrusion and configured to receive the first protrusion and the second protrusion so as to couple the main body to the outer housing and the inner housing.
In various embodiments, the connector may be an MPO connector. In some embodiments, the first protrusion and the second protrusion may be configured to snap into the window so as to lock the push-pull tab to the connector. In some embodiments, the first protrusion and the second protrusion may be substantially parallel. In some embodiments, the first protrusion and the second protrusion may be oriented in a direction substantially orthogonal to a longitudinal axis of the connector.
In some embodiments, the first wall may form a top portion of the push-pull tab, and the plurality of walls may further include two side walls. In various embodiments, the main body may be a single integral structure.
In various embodiments, the push-pull tab may further comprise at least one thin wall configured to push against the second protrusion of the inner housing to prevent a transverse movement of the push-pull tab when the push-pull tab is pushed.
In some embodiments, the optical fiber connector assembly may further comprise a boot coupled to the connector. The extender may be configured to extend over the boot. In one example, the boot may have a length of about 5.5 mm. In some embodiments, the extender may be coupled to a rear portion of the main body.
According to another aspect, there is provided an optical fiber connector assembly comprising a connector having an outer housing and an inner housing, the inner housing extending beyond a rear end of the outer housing, the outer housing having a first protrusion and the inner housing having a second protrusion positioned at a distance from the first protrusion. The optical fiber connector assembly further comprises a push-pull tab comprising a first piece and a second piece configured to couple to each other so as to form a passageway for receiving the connector. The push-pull tab further comprises an extender coupled to one of the first piece and the second piece, at least one of the first piece and the second piece having a window sized according to the distance between the first protrusion and the second protrusion and configured to receive the first protrusion and the second protrusion so as to couple the push-pull tab to the outer housing and the inner housing. The connector may be an MPO connector.
In various embodiments, the first protrusion and the second protrusion may be configured to snap into the window so as to lock the push-pull tab to the connector. The first protrusion and the second protrusion may be substantially parallel. The first protrusion and the second protrusion may be oriented in a direction substantially orthogonal to a longitudinal axis of said connector.
In some embodiments, the optical fiber connector assembly may further comprise a boot coupled to the connector. The extender may be configured to extend over the boot. In one example, the boot may have a length of about 5.5 mm. In some embodiments, the extender may be coupled to a rear portion of one of the first piece and the second piece.
In some embodiments, the first piece may include a plurality of tabs and the second piece may include a plurality of openings, the plurality of tabs being configured to snap into the plurality of openings so as to lock the first piece to the second piece. In some embodiments, the first piece may include a first plurality of side walls having the plurality of tabs thereon, and the second piece may include a second plurality of side walls having the plurality of openings thereon.
In various embodiments, the window may have a first side wall configured to pull the first protrusion when the push-pull tab is pulled. The window may have a second side wall configured to push the second protrusion when the push-pull tab is pushed.
In some embodiments, the push-pull tab may comprise a joint coupling the first piece and the second piece.
This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.
As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”
The following terms shall have, for the purposes of this application, the respective meanings set forth below.
A connector, as used herein, refers to a device and/or components thereof that connects a first module or cable to a second module or cable. The connector may be configured for fiber optic transmission or electrical signal transmission. The connector may be any suitable type now known or later developed, for example, embodiments of multiple-fiber push-on/pull-off (MPO) connectors, such as the Senko mini MPO connector and the Senko MPO Plus connector. The connector may generally be defined by a connector housing body.
A “fiber optic cable” or an “optical cable” refers to a cable containing one or more optical fibers for conducting optical signals in beams of light. The optical fibers can be constructed from any suitable transparent material, including glass, fiberglass, and plastic. The cable can include a jacket or sheathing material surrounding the optical fibers. In addition, the cable can be connected to a connector on one end or on both ends of the cable.
Various embodiments described herein generally provide connector assemblies having optical fiber connectors with push-pull tabs configured to allow a user to easily remove or insert connectors into adapters, such as adapters disposed on a high density panel without damaging surrounding connectors, accidentally disconnecting surrounding connectors, disrupting transmissions through surrounding connectors, and/or the like.
As shown in
In various embodiments, the push-pull tab 104 may be removable from the optical connector assembly 100 by decoupling it from the connector 102. The push-pull tab 104 may also be re-installed by coupling to the connector 102.
The main body 112 includes a plurality of walls, including a first wall 134 that forms a top portion of the main body. The plurality of walls also includes two side walls 136 and 138. A plurality of tabs 140 may extend from the side walls 136 and 138, thereby forming a partial wall at the bottom portion that is opposite to the top portion of the main body 112. The plurality of walls may include the partial wall defined by the plurality of tabs 140, and may form a passageway 142 configured to receive the connector 102, for example the outer housing 106 of the connector. The plurality of walls may facilitate coupling of the push-pull tab 104 to the connector 102, for example by gripping the outer housing 106. The side walls 136 and 138 may be configured to flex to allow receiving the connector 102. The top wall 134 of the push-pull tab 104 has a window 116 sized to receive a plurality of protrusions of the connector 102, so as to lock the push-pull tab to the connector.
The outer housing 106 has a first protrusion 120 and the inner housing 108 has a second protrusion 118. The second protrusion 118 is positioned at one end of the inner housing 108, beyond the rear end 144 of the outer housing 106. The first protrusion 120 and the second protrusion 118 are substantially parallel to each other, and separated by a distance 148. The first and second protrusions may be oriented in a direction substantially orthogonal to a longitudinal axis 146 of the connector 102. The first protrusion 120 and the second protrusion 118 are also configured to snap into the window 116 of the push-pull tab 104 so as to lock the push-pull tab to the connector 102. Therefore, the window 116 of the connector 102 may be sized according to the distance 148 between the first protrusion 120 and the second protrusion 118, as shown in
The connector 150 has an outer housing 152 and an inner housing 154. Similar to the embodiment of
In various embodiments, as illustrated for example in
The first piece 162 has a window 170 configured to receive the first and second protrusions of a connector, such as the connector 102 and 150, so as to couple the push-pull tab to the outer housing and the inner housing of the connector. The window 170 is sized according to a distance between the first protrusion and the second protrusion of the corresponding connector. The second piece 164 also has a respective window 172. Similar to the first window 170 positioned at the top portion of the push-pull tab 160, the second window 172 is positioned at the bottom portion of the push-pull tab. The window 172 is also sized to receive respective protrusions positioned at the bottom portion of the connector, on the inner and outer housings. In this embodiment, the push-pull tab 160 has two windows on opposite sides of the push-pull tab. In other embodiments, one of the first piece or the second piece may have a window for coupling to the inner and outer housings of the connector.
The first piece 162 further includes a plurality of tabs 174, and the second piece 164 includes a plurality of openings 176, the plurality of tabs 174 being configured to snap into the plurality of openings 176 so as to lock the first piece to the second piece. Specifically, the first piece 162 includes a first plurality of side walls 178 having the plurality of tabs 174 thereon, and the second piece 164 includes a second plurality of side walls 180 having the plurality of openings 176 thereon. In other embodiments, the second piece may include the plurality of tabs and the first piece may include the plurality of openings. In yet other embodiments, each of the first piece and the second piece may have at least one tab and at least one opening configured to couple with a respective tab and opening of the other piece.
Various features described above in relation to the single piece push-pull tab 104 may also be included in the two piece push-pull tab 160.
Various embodiments described herein use the push and pull mechanism described above in relation with
In various embodiments, it may be desirable to prevent a push-pull tab from moving upward, for example when pushed with a slightly raised motion. In various embodiments, a thin wall may be formed adjacent to the side wall of the window and configured to interact with the protrusion of the inner housing so as to prevent the push-pull tab from moving vertically or in a transverse direction when pushed in, as illustrated in relation to
The first piece 232 and the second piece 234 may further comprise a plurality of tabs and openings configured to snap with each other, or alternatively another type of fastening mechanism, to couple the first and second pieces, as described for example in relation with
The first piece 232 has a window 240 configured to receive the first and second protrusions of a connector, such as the connector 102 and 150, so as to couple the push-pull tab to the outer housing and the inner housing of the connector. The window 240 is sized according to a distance between the first protrusion and the second protrusion of the corresponding connector. The second piece 234 also has a respective window 242. Similar to the first window 240 positioned at the top portion of the push-pull tab 230, the second window 242 is positioned at the bottom portion of the push-pull tab. The window 242 is also sized to receive respective protrusions positioned at the bottom portion of the connector, on the inner and outer housings.
Each of the windows 240 and 242 has a respective side wall 244 and 246 configured to push against a respective protrusion of the inner housing when the push-pull tab is pushed, for example as described in relation with
Referring again to
The first piece 308 has a window 322 configured to receive the first and second protrusions of a connector, such as the connector 102 and 150, so as to couple the push-pull tab to the outer housing and the inner housing of the connector. The window 322 is sized according to a distance between the first protrusion and the second protrusion of the corresponding connector. The second piece 310 also has a respective window 324. Similar to the first window 322 positioned at the top portion of the push-pull tab 300, the second window 324 is positioned at the bottom portion of the push-pull tab. The window 324 is also sized to receive respective protrusions positioned at the bottom portion of the connector, on the inner and outer housings. In this embodiment, the push-pull tab 300 has two windows on opposite sides of the push-pull tab. In other embodiments, one of the first piece or the second piece may have a window for coupling to the inner and outer housings of the connector.
Various features described above in relation to the single piece push-pull tab 104 may also be included in embodiments of the two piece push-pull tab, including the hinged push-pull tab. Further, various features described above in relation to the two piece push-pull tab, including the hinged push-pull tab 300, may be included in embodiments of the single piece push-pull tab.
In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” et cetera). While various compositions, methods, and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of or “consist of the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). In those instances where a convention analogous to “at least one of A, B, or C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, et cetera As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, et cetera As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.
This application is a divisional application of and claims priority to U.S. patent application Ser. No. 15/463,275, filed Mar. 20, 2017.
Number | Name | Date | Kind |
---|---|---|---|
D232143 | Spydevold | Jan 1974 | S |
4762388 | Tanaka et al. | Aug 1988 | A |
4764129 | Jones et al. | Aug 1988 | A |
4840451 | Sampson et al. | Jun 1989 | A |
5076656 | Briggs | Dec 1991 | A |
5212752 | Stephenson et al. | May 1993 | A |
5315679 | Baldwin | May 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5348487 | Marazzi et al. | Sep 1994 | A |
5444806 | deMarchi et al. | Aug 1995 | A |
5481634 | Anderson et al. | Jan 1996 | A |
5506922 | Grois et al. | Apr 1996 | A |
5570445 | Chou et al. | Oct 1996 | A |
5588079 | Tanabe et al. | Dec 1996 | A |
5684903 | Kyomasu et al. | Nov 1997 | A |
5687268 | Stephenson et al. | Nov 1997 | A |
5937130 | Amberg et al. | Aug 1999 | A |
5956444 | Duda et al. | Sep 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
6041155 | Anderson et al. | Mar 2000 | A |
RE37080 | Stephenson et al. | Mar 2001 | E |
6206577 | Hall, III et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6227717 | Ott et al. | May 2001 | B1 |
6247849 | Liu | Jun 2001 | B1 |
6461054 | Iwase | Oct 2002 | B1 |
6478472 | Anderson et al. | Nov 2002 | B1 |
6551117 | Poplawski et al. | Apr 2003 | B2 |
6565262 | Childers | May 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6854894 | Yunker et al. | Feb 2005 | B1 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7091421 | Kukita et al. | Aug 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
D533504 | Lee | Dec 2006 | S |
7150567 | Luther et al. | Dec 2006 | B1 |
7153041 | Mine et al. | Dec 2006 | B2 |
7198409 | Smith et al. | Apr 2007 | B2 |
7207724 | Gurreri | Apr 2007 | B2 |
D543124 | Raatikainen | May 2007 | S |
D543146 | Chen et al. | May 2007 | S |
7258493 | Milette | Aug 2007 | B2 |
7281859 | Mudd et al. | Oct 2007 | B2 |
7287447 | Pettit, Jr. | Oct 2007 | B2 |
D558675 | Chien et al. | Jan 2008 | S |
7315682 | En Lin et al. | Jan 2008 | B1 |
7325976 | Gurreri et al. | Feb 2008 | B2 |
7325980 | Pepe | Feb 2008 | B2 |
7329137 | Martin et al. | Feb 2008 | B2 |
7354291 | Caveney et al. | Apr 2008 | B2 |
7390203 | Murano et al. | Jun 2008 | B2 |
D572661 | En Lin et al. | Jul 2008 | S |
7431604 | Waters et al. | Oct 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7465180 | Kusuda et al. | Dec 2008 | B2 |
7561775 | Lin et al. | Jul 2009 | B2 |
7588373 | Sato | Sep 2009 | B1 |
7591595 | Lu et al. | Sep 2009 | B2 |
7594766 | Sasser et al. | Sep 2009 | B1 |
7641398 | O'Riorden et al. | Jan 2010 | B2 |
7695199 | Teo et al. | Apr 2010 | B2 |
7699533 | Milette | Apr 2010 | B2 |
7824113 | Wong et al. | Nov 2010 | B2 |
D641708 | Yamauchi | Jul 2011 | S |
8251733 | Wu | Aug 2012 | B2 |
8559781 | Childers | Oct 2013 | B2 |
9052474 | Jiang et al. | Jun 2015 | B2 |
9989712 | Takano | Jun 2018 | B1 |
20040052473 | Seo et al. | Mar 2004 | A1 |
20040136657 | Ngo | Jul 2004 | A1 |
20040141693 | Szilagyi et al. | Jul 2004 | A1 |
20040161958 | Togami et al. | Aug 2004 | A1 |
20040247252 | Ehrenreich et al. | Dec 2004 | A1 |
20060013539 | Thaler et al. | Jan 2006 | A1 |
20060089049 | Sedor | Apr 2006 | A1 |
20060269194 | Luther et al. | Nov 2006 | A1 |
20070149062 | Long et al. | Jun 2007 | A1 |
20070230874 | Lin | Oct 2007 | A1 |
20070232115 | Burke et al. | Oct 2007 | A1 |
20070243749 | Wu | Oct 2007 | A1 |
20080044137 | Luther et al. | Feb 2008 | A1 |
20080069501 | Mudd et al. | Mar 2008 | A1 |
20080101757 | Lin et al. | May 2008 | A1 |
20080226237 | O'Riorden | Sep 2008 | A1 |
20080267566 | Lin et al. | Oct 2008 | A1 |
20090028507 | Jones et al. | Jan 2009 | A1 |
20090214162 | O'Riorden | Aug 2009 | A1 |
20090220197 | Gniadek | Sep 2009 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100284656 | Morra et al. | Nov 2010 | A1 |
20100322561 | Lin et al. | Dec 2010 | A1 |
20110044588 | Larson et al. | Feb 2011 | A1 |
20110131801 | Nelson et al. | Jun 2011 | A1 |
20110177710 | Tobey | Jul 2011 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20160370545 | Jiang | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2836038 | Nov 2006 | CN |
201383588 | Jan 2010 | CN |
202006011910 | Mar 2007 | DE |
102006019335 | Oct 2007 | DE |
1074868 | Jul 2001 | EP |
1566674 | Aug 2005 | EP |
2009229545 | Oct 2009 | JP |
2009276493 | Nov 2009 | JP |
200179904 | Oct 2001 | WO |
2008112986 | Sep 2008 | WO |
2009135787 | Nov 2009 | WO |
Entry |
---|
Extended European Search Report of related application No. 18153752.3 dated Jul. 17, 2018, 8 pgs. |
International Search Report and Written Opinion for Application No. PCT/US11/58799, dated Nov. 1, 2011. |
Fiber Optic Connectors and Assemblies Catalog 2009, Huber & Suhner Fiber Optics, Herisau, Switzerland, www.google.co.in/url?sa=t&source=web&cd=63&ved=0CCMQFjACODw&url=http%3A%2F%2Fwww.hubersuhner.com%2Fwrite_rtn_binary.pdf%3Fbinaryid%3D8DBC7DE2EB72D315%26binarytype%3D48403DAA363AEB7E&ei=ZvcvTujWH4ntrAfH-dXZCg&usg=AFQjCNE1MdC-4avewRJU6IDVc_WYbr0QQ. |
Fiber Optic Interconnect Solutions, Tactical Fiber Optic Connector Cables and Termini, 2006, Glenair, Inc., Glendale, California. |
International Search Report and Written Opinion for Application No. PCT/US12/039126, dated Aug. 27, 2012. |
Non-final Office action from related U.S. Appl. No. 15/463,275, filed Mar. 20, 2017, dated Aug. 18, 2017, 9 pages. |
Fiber Optic Products Catalog, Nov. 2007, Tyco Electronics Corporation, Harrisburg, Pennsylvania—part 1. |
Fiber Optic Products Catalog, Nov. 2007, Tyco Electronics Corporation, Harrisburg, Pennsylvania—part 2. |
Number | Date | Country | |
---|---|---|---|
20180267258 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15463275 | Mar 2017 | US |
Child | 15964335 | US |