MR Quantification of Myocardial Oxygen Utilization in Chronic Myocardial Infarction without Contrast

Information

  • Research Project
  • 10086106
  • ApplicationId
    10086106
  • Core Project Number
    K25HL141634
  • Full Project Number
    5K25HL141634-03
  • Serial Number
    141634
  • FOA Number
    PA-18-396
  • Sub Project Id
  • Project Start Date
    2/1/2019 - 5 years ago
  • Project End Date
    1/31/2024 - 4 months ago
  • Program Officer Name
    WANG, WAYNE C
  • Budget Start Date
    2/1/2021 - 3 years ago
  • Budget End Date
    1/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
  • Award Notice Date
    3/24/2021 - 3 years ago

MR Quantification of Myocardial Oxygen Utilization in Chronic Myocardial Infarction without Contrast

PROJECT SUMMARY The overall goal of this research is to develop a quantitative Magnetic Resonance Imaging (MRI) approach of oxygen utilization that provides a non-invasive and effective imaging test for the assessment of myocardial infarction. According to the most recent Heart Disease and Stroke Statistical Update (2015) published by the American Heart Association, almost 1 out of every 3 deaths in the United States (US) is caused by cardiovascular diseases that include coronary artery disease (CAD) every year. Over $40 billion is spent on cardiac stress tests each year, and nearly 1.5 million individuals are undergo percutaneous coronary intervention or coronary artery bypass surgery to treat severe CAD after nuclear stress test screening. However, the occurrence of obstructive CAD found during invasive stenting/pre-surgical coronary X-ray angiography is less than 40%. The current screening paradigm is expensive, exposes patients to ionizing radiation, and carries additional risks of intimal injury and acute vessel dissection. Cardiac Magnetic Resonance Imaging is a non-invasive imaging modality that currently is the gold standard for the quantitative assessment of ventricular function and myocardial viability evaluation. In particular, LGE can assess viable or non-viable myocardial tissue by interrogating the delayed response to gadolinium-based contrast agent administration. While this LGE assessment is robust, this reference evaluation leaves no room for further improvements via scan-time reduction, and forces any further quantification of underlying tissue pathophysiology to be obtained as separate scans that prolong each patient exam. Accordingly, the 30-plus minute LGE-CMR exam with contrast injection is the widely established, and definitive state-of-art. The scientific premise for this research is that MRI of oxygen utilization provides correlative information on the extent of viable or non-viable tissue without contrast injection. We hypothesize that a non-contrast MR quantification of oxygen utilization in less than one minute of additional scan-time to current routine cardiac MR protocol may offer a new paradigm-shifting, fast alternative evaluation of myocardial infarctions without the need for contrast injection. Hence, we aim to: 1) develop the pulse sequence and advanced image reconstruction methods to quantify myocardial oxygen utilization; 2) validate this method in the patient cohort, and 3) evaluate the proposed cardiac MRI evaluation in a single-center patient imaging setting over a 3-year span in two subject cohorts. The outcome of this work is not only the scientific findings pertaining to the feasibility of the proposed MRI method, but also the compilation of an extensive 200-patient database including all quantitative study measurements of the state-of-the-art MRI evaluations, patient data including outcomes, as well as findings from other modalities such as x-ray catheter (and echo) if these are also performed.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    K25
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    153834
  • Indirect Cost Amount
    12307
  • Total Cost
    166141
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
    BIOMED ENGR/COL ENGR/ENGR STA
  • Funding ICs
    NHLBI:166141\
  • Funding Mechanism
    OTHER RESEARCH-RELATED
  • Study Section
    MPOR
  • Study Section Name
    NHLBI Mentored Patient-Oriented Research Review Committee
  • Organization Name
    ILLINOIS INSTITUTE OF TECHNOLOGY
  • Organization Department
    BIOMEDICAL ENGINEERING
  • Organization DUNS
    042084434
  • Organization City
    CHICAGO
  • Organization State
    IL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    606163717
  • Organization District
    UNITED STATES