This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2019-068937, filed on Mar. 29, 2019, the entire contents of which are incorporated herein by reference.
Disclosed Embodiments relate to a magnetic resonance imaging (MRI) apparatus, an image processing apparatus, and an image processing method.
An MRI apparatus is an imaging apparatus which magnetically excites nuclear spin of an object placed in a static magnetic field with a radio frequency (RF) having the Larmor frequency, and reconstructs an image based on the magnetic resonance (MR) signals emitted from the object due to the excitation.
Among MRI techniques, a Dixon method is known. In the Dixon method, for example, the water image and the fat image are generated from a plurality of images obtained by reconstructing data that are acquired at different echo times TE. For example, from a first image corresponding to a first echo time and a second image corresponding to a second echo time, the water image and the fat image are generated. In the water image, the fat component of the object is suppressed, while, in the fat image, the water component of the object is suppressed.
The phase of each pixel value of the first image and the second image is affected by non-uniformity of a static magnetic field. Thus, when generating the water image and the fat image from the first image and the second image, it is important to correctly estimate the influence of the non-uniformity of the static magnetic field.
For this reason, various techniques have been conventionally developed, by which the effect of the non-uniformity of the static magnetic field is correctly estimated such that the water image and the fat image are accurately calculated. Among such techniques, a technique called a TRW-S (sequential tree-reweighted message-passing) algorithm is known.
In the TRW-S algorithm, the effect of the non-uniformity of the static magnetic field is accurately estimated, by using an assumption that the static magnetic field, if at all, should change continuously and smoothly.
However, even when the TRW-S algorithm is used, the effect of the non-uniformity of the static magnetic field may be erroneously estimated in some cases. If the effect of the non-uniformity of the static magnetic field is erroneously estimated, it may cause so-called a “swap”. In the swap event, part of the region that should be depicted as the water component in the water image is erroneously swapped (i.e., replaced or exchanged) with the fat component, or conversely, part of the region that should be depicted as the fat component in the fat image is erroneously swapped with the water component.
In the accompanying drawings:
Hereinafter, embodiments of an MRI apparatus and an image processing apparatus will be described by referring to the accompanying drawings. In the following embodiments, components denoted by the same reference signs are assumed to be the same in terms of function and configuration, and duplicate description is omitted.
In at least one embodiment, an MRI apparatus includes: a scanner configured to acquire a plurality of MR signals at respective different echo times from an imaging region of an object, the imaging region including a plurality of substances that are different in magnetic resonance frequency from each other; and processing circuitry. The processing circuitry is configured to: calculate phase correction data from the plurality of MR signals, the phase correction data including information on phase rotation amount due to non-uniformity of a static magnetic field; and generate an image by using the phase correction data and the plurality of MR signals in such a manner that a signal from at least one of the plurality of substances is suppressed in the image. The processing circuitry is further configured to: generate first phase correction data composed of phase data that correspond to phase rotation amount selected from a plurality of choices of phase rotation amount; calculate discontinuity of the first phase correction data; and generate second phase correction data by substituting at least part of the first phase correction data with non-selected phase data depending on the discontinuity, the non-selected phase data corresponding to phase rotation amount that is not selected among the plurality of choices of phase rotation amount.
The gantry 100 includes a static magnetic field magnet 10, a gradient coil assembly 11, and a whole body (WB) coil 12, and these components are housed in a cylindrical housing. The bed 500 includes a bed body 50 and a table 51.
The control cabinet 300 includes three gradient coil power supplies 31 (31x for an X-axis, 31y for a Y-axis, and 31z for a Z-axis), a coil selection circuit 36, an RF receiver 32, an RF transmitter 33, and a sequence controller 34.
The console 400 includes processing circuitry 40, a memory 41, a display 42, and an input interface 43. The console 400 functions as a host computer.
The static magnetic field magnet 10 of the gantry 100 is substantially in the form of a cylinder, and generates a static magnetic field inside a bore, which is a space formed inside the cylindrical structure and serves as an imaging region of the object (for example, a patient). The static magnetic field magnet 10 includes a superconducting coil inside, and the superconducting coil is cooled down to an extremely low temperature by liquid helium. The static magnetic field magnet 10 generates a static magnetic field by supplying the superconducting coil with an electric current to be provided from a static magnetic field power supply (not shown) in an excitation mode. Afterward, the static magnetic field magnet 10 shifts to a permanent current mode, and the static magnetic field power supply is separated. Once it enters the permanent current mode, the static magnetic field magnet 10 continues to generate a strong static magnetic field for a long time, for example, over one year.
The gradient coil assembly 11 is also substantially in the form of a cylinder and is fixed to the inside of the static magnetic field magnet 10. The gradient coil assembly 11 has a three-channel structure and includes an X-axis gradient coil, a Y-axis gradient coil, and a Z-axis gradient coil.
The bed body 50 of the bed 500 can move the table 51 in the vertical direction and in the horizontal direction. The bed body 50 moves the table 51 with the object placed thereon to a predetermined height before imaging. Afterward, when the object is imaged, the bed body 50 moves the table 51 in the horizontal direction so as to move the object to the inside of the bore.
The WB body coil 12 is shaped substantially in the form of a cylinder so as to surround the object, and is fixed to the inside of the gradient coil assembly 11. The WB coil 12 applies RF pulses to be transmitted from the RF transmitter 33 to the object, and receives MR signals emitted from the object due to excitation of hydrogen nuclei.
The MRI apparatus 1 includes an RF coil 20 in addition to the WB coil 12 as shown in
The RF transmitter 33 generates an RF pulse on the basis of an instruction from the sequence controller 34. The generated RF pulse is transmitted to the WB coil 12 and applied to the object. An MR signal is generated from the object by each application of the RF pulse. The RF coil 20 or the WB coil 12 receives this MR signal.
The MR signal received by the RF coil 20, more specifically, the MR signal received by each element coil in the RF coil 20 is transmitted to the coil selection circuit 36 via a cable provided on the table 51 and the bed body 50. The coil selection circuit 36 selects a signal outputted from the RF coil 20 or a signal outputted from the WB coil depending on a control signal outputted from the sequence controller 34 or the console 400.
The selected signal is outputted to the RF receiver 32. The RF receiver 32 performs A/D (Analog to Digital) conversion of the channel signal (i.e., the MR signal), and outputs the digitized MR signal to the sequence controller 34. The digitized MR signals are called raw data in some cases. Note that the A/D conversion may be performed inside the RF coil 20 or in the coil selection circuit 36.
The sequence controller 34 performs a scan of the object by driving the gradient coil power supplies 31, the RF transmitter 33, and the RF receiver 32 under the control of the console 400. When the sequence controller 34 receives the raw data from the RF receiver 32 by performing the scan, the sequence controller 34 transmits the received raw data to the console 400.
The sequence controller 34 includes processing circuitry (not shown). This processing circuitry is configured as, for example, a processor for executing predetermined programs or configured as hardware such as a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC).
The console 400 includes a memory 41, an input interface 43, a display 42, and processing circuitry 40. The memory 41 is a recording medium including a read-only memory (ROM) and a random access memory (RAM) in addition to an external memory device such as a hard disk drive (HDD) and an optical disc device. The memory 41 stores various programs to be executed by a processor of the processing circuitry 40 as well as various data and information.
The input interface 43 includes various devices for an operator to input various data and information, and is configured of, for example, a mouse, a keyboard, a trackball, and/or a touch panel.
The display 42 is a display device such as a liquid crystal display panel, a plasma display panel, and an organic EL panel.
The processing circuitry 40 is, for example, a circuit provided with a central processing unit (CPU) and/or a special-purpose or general-purpose processor. The processor implements various functions described below by executing the programs stored in the memory 41. The processing circuitry 40 may be configured of hardware such as an FPGA and an ASIC. The various functions described below can also be implemented by such hardware. Additionally, the processing circuitry 40 can implement the various functions by combining hardware processing and software processing based on its processor and programs.
In the configuration of the MRI apparatus 1 shown in
The MRI apparatus 1 of the present embodiment executes an imaging method or image processing method called a Dixon method.
As mentioned above, in the Dixon method, for example, the water image and the fat image are generated from a plurality of images obtained by reconstructing data that are acquired at different echo times TE. For example, from a first image corresponding to a first echo time and a second image corresponding to a second echo time, two images, i.e., the water image and the fat image are generated, in each of which water and fat are separated from each other. In the water image, the fat component of the object is suppressed, while, in the fat image, the water component of the object is suppressed.
Hereinafter, a description will be given of the so-called two-point Dixon method in which a water image and a fat image are generated from two images, i.e., the first image and the second image.
However, the present embodiment is not limited to the two-point Dixon method but can be extended to a so-called multipoint Dixon method in which a water image and a fat image are generated by using three or more images corresponding to respective three or more echo times.
In the Dixon method, by using the fact that the water component and the fat component in each tissue in the imaging region are different in magnetic resonance frequency, a water image, in which the fat component is suppressed, is generated, or a fat image, in which a water component is suppressed, is generated. However, the substances to be processed by the Dixon method are not limited to water and fat. When a plurality of substances included in the imaging region have different magnetic resonance frequencies, these substances can be separated by using the Dixon method. In this case, the MRI apparatus 1 of the present embodiment can generate an image in which signals from at least one of the plurality of substances are suppressed. The following description, however, will be given of the case where the substances to be processed are a water component and a fat component, from the viewpoint of simplicity.
The phase of each pixel value of the first image and the second image is affected by the non-uniformity of the static magnetic field. Thus, when calculating the water image and the fat image from the first image and the second image, it is important to correctly estimate the effect of the non-uniformity of the static magnetic field.
The complex pixel value S1 of the first image and the complex pixel value S2 of the second image are affected by the phase φ caused by the static-magnetic-field non-uniformity ΔB. As described below, the phase φ can be obtained by solving an equation including known parameters such as the complex pixel value S1 of the first image, the complex pixel value S2 of the second image, and the echo times TE1 and TE2 corresponding to the respective images. However, since this equation is a quadratic equation, the solutions of this quadratic equation yield two phases of φA and φB, which correspond to positive and negative signs, respectively.
The phase φA and the phase φB are calculated as a pair, one of which is the true phase and the other represents the false phase. Since the pair of the phase φA and the phase φB are calculated for each pixel of the first image and the second image, a set of phases φA can be represented as a phase map φA by arranging the phases φA at corresponding pixel positions as shown in the upper center of
In order to correctly determine the non-uniformity of the static magnetic field, it is necessary to correctly determine which of the phase φA and the phase φB is true and which is false, and determine one of the phases φA and φB as the true phase φ.
In the TRW-S algorithm, as mentioned above, the effect of the non-uniformity of the static magnetic field is accurately estimated, by using an assumption that the static magnetic field, if at all, should change continuously and smoothly. Non-Patent Document 1 discloses a conventional TRW-S algorithm in detail.
[Non-Patent Document 1] Johan Berglund et al., Two-point Dixon Method With Flexible Echo Times, MRM 65:994-1004 (2011) In the Non-Patent Document 1, prior to execution of the TRW-S algorithm, pixel/voxel decimation processing (i.e., processing of reducing resolution, hereinafter, simply referred to as the decimation processing) is performed on the phase map φA and the phase map φB in order to reduce the processing load. Further, as shown in the right part of
However, even if the TRW-S algorithm described in Non-Patent Document 1 is applied, the true phase may still be erroneously estimated. That is, the false phase may be erroneously selected as the true phase from the phases ΦA and ΦB. If the false phase is erroneously selected as the true phase, and then the water image and the fat image are generated by using the selected phase, it may cause a swap event. In the swap event, part of the region that should be depicted as the water component in the water image is erroneously swapped with the fat component, or conversely, part of the region that should be depicted as the fat component in the fat image is erroneously swapped with the water component.
The MRI apparatus 1 of the present embodiment deals with such a swap event between the water region and the fat region. In particular, the MRI apparatus 1 of the present embodiment provides a more advanced TRW-S algorithm than the conventional TRW-S algorithm for suppressing the swap event between the water region and the fat region.
As shown in
First, in the step ST10 of
Between the first and second pulse sequences, the echo time TE is set to a different value, whereas the type of pulse sequence is basically set to be the same and all the parameters of the pulse sequence except the echo time are set to be basically the same. Each of the first and second pulse sequences may be a SE (Spin Echo) pulse sequence or a GRE (Gradient Echo) pulse sequence.
The echo time of the first pulse sequence is set to TE1, and the echo time of the second pulse sequence is set to TE2. As is well known, the water component and the fat component are different in magnetic resonance frequency (for example, both are separated by about 3.5 ppm). When the echo times TE are different, the phase rotation amount of the water component and the phase rotation amount of the fat component are different. When the respective echo times TE1 and TE2 of the first and second pulse sequence are set such that the phase of the water component and the phase of the fat component are opposite to each other, an image generated from MR signals acquired by these first and second pulse sequence is called an Out-of-Phase image. On the other hand, when the respective echo times TE1 and TE2 of the first and second pulse sequence are set such that the phase of the water component and the phase of the fat component are in phase, an image generated from MR signals acquired by these first and second pulse sequence is called an In-Phase image.
In order to generate a water image and a fat image, it is sufficient if the echo times TE1 and TE2 are known, and it is not necessarily required that one of the first and second images is an Out-of-Phase image and the other is an In-Phase image. Note that, however, for facilitating understanding, a description will be given of the case where the first image is an Out-of-Phase image and the second image is an In-Phase image, hereafter. Further, note that most of equations or expressions used in the following are cited from the Non-Patent Document 1.
The process of calculating the phase φA and the phase φB from the first image and the second image will be described below. When each pixel value (complex number) of the first image is denoted as S1 and each pixel value (complex number) of the second image is denoted as S2, the pixel values S1 and S2 can be represented by Expressions 1 and 2 below.
S
1=(W+a1F)b0 Expression 1
S
2=(W+a2F)b0b Expression 2
In Expressions 1 and 2, W is a signal value (real number) when the echo time TE for water is zero, and F is a signal value (real number) when the echo time TE for fat is zero.
The symbol “b0” is a phase term (b0=exp(jφ0)) when the phase of the water signal in the case of TE=TE1 is defined as φ0. The symbol “b” is a phase term (b=exp(jφ) when φ is defined as a phase that rotates mainly due to non-uniformity of the static magnetic field during the time ΔT (ΔT=TE2−TE1) between the echo times TE2 and TE1. The parameters a1 and a2 are represented by Expressions 3 and 4 below.
a
1=exp(−j2πγB0δTE1) Expression 3
a
2=exp(−j2πγB0δTE2) Expression 4
In Expressions 3 and 4, γ is the gyromagnetic ratio, B0 is the static magnetic field strength, δ is the chemical shift of fat with respect to water (about 3.5 ppm), the echo time TE1 is the time length from the application timing of the excitation pulse (time t is zero) to the peak timing of the echo (time t=TE1) in the first pulse sequence for acquiring the first image, and the echo time TE2 is the time length from the application timing of the excitation pulse (t=0) to the peak timing of the echo (t=TE2) in the second pulse sequence for acquiring the second image. Note that, the parameters a1 and a2 are known parameters determined by parameters of the pulse sequence such as echo time TE, which are set as the imaging conditions.
When Expression 1 and Expression 2 are respectively squared, Expression 5 and Expression 6 below are obtained.
|S1|2=W2+F2|a1|2+2WFRe(a1) Expression 5
|S2|2=W2+F2|a2|2+2WFRe(a2) Expression 6
When Q=F/(W+F) is introduced as a fat ratio, Expression 5 and Expression 6 become quadratic equations of Q. The solution of this quadratic equation is Expression 7 below.
In Expression 7, c1, c2, and c3 are expressed by Expressions 8 to 10 below.
c
1
=|S
1|2(1−Re(a2))−|S2|2(1−Re(a1)) Expression 8
c
2
=|S
1|2(|a2|2−Re(a2))−|S2|2(|a1|2−Re(a1)) Expression 9
c
3
=|S
1|2|S2|2|a1−a2|2−(Im(a1)|S2|2−Im(a2)|S1|2)2 Expression 10
Expressions 11 and 12 are obtained from Expressions 1, 2, and 7 as follows.
The symbols “bA” in Expression 11 and “bB” in Expression 12 are respectively related to the phase φA and the phase φB by Expressions 13 and 14 below.
b
A=exp(jφA) Expression 13
b
B=exp(jφB) Expression 14
As described above, on the basis of Expression 1 to Expression 14, the phase φA and the phase φB can be calculated from the pixel value S1 of the first image, the pixel value S2 of the second image, and the known parameters a1 and a2. Note that “bA” and “bB” correspond to the respective signs of ± in Expression 7, and similarly, the phases φA and φB correspond to the respective signs of ± in Expression 7. One of the phase φA and the phase φB is the true phase corresponding to the actual static magnetic field distribution, and the other of the phases φA and φB is the false phase.
The computation processing from Expressions 1 to 14 corresponds to the processing of the step ST30 in
In the step ST50, an amplitude m is calculated from the pixel value S1 of the first and the pixel value S2 of the second image by, for example, Expression 15 below, and then an amplitude map, in which the amplitudes m are arranged at the corresponding pixel positions, is generated.
m=|S
1
|+|S
2| Expression 15
Instead of Expression 15, the amplitude map may be generated by using only the amplitude of the pixel values of the In-Phase image (second image).
In the step ST60, the phase map φA and the phase map φB generated in the step ST40 are subjected to a decimation processing (i.e., reduced in resolution), and a low-resolution phase map φA and a low-resolution phase map φB are generated. The decimation processing is performed in order to reduce the processing load of the advanced TRW-S algorithm executed in the step ST80. Similarly, in the step ST70, the amplitude map (m) generated in the step ST50 is subjected to the decimation processing to generate a low-resolution amplitude map (M).
Incidentally, before the decimation processing, both the phase φ and the phase map φA, φB are written in lowercase, and after the decimation processing, the phase Φ and the phase map ΦA, ΦB are written in uppercase.
In the step ST80, the advanced TRW-S algorithm is executed by using the low-resolution phase maps ΦA and ΦB and the low-resolution amplitude map (M) to estimate the true phase Φ from the low-resolution phase maps ΦA and ΦB, and generate a low-resolution estimated true phase map (0). Details of the processing of the step ST80 will be described below.
In the step ST90, the processing circuitry 40 performs smoothing processing on the estimated true phase map (Φ) generated as a low-resolution map in the step ST80 so as to generate an estimated true phase map (φ), resolution of which is increased to the resolution of the original images (first and second images).
Finally, in the step ST100, each pixel value W of the water image and each pixel value F of the fat image are calculated by using the first and second images and the estimated true phase map (φ) on the basis of Expressions 16 to 20 below.
The symbol “b” in Expression 16 is the phase term (b=exp(jϕ)) corresponding to the true phase φ to be estimated by the advanced TRW-S algorithm. The symbol WLS in Expression 19 is the pixel value of the water image to be finally obtained, and FLS in Expression 19 is the pixel value of the fat image to be finally obtained. Expression 20 is an inverse matrix (i.e., Moore-Penrose inverse matrix) for minimizing the respective square errors of WLS and FLS.
Hereinafter, the advanced TRW-S algorithm of the step ST80 will be described. Note that the advanced TRW-S algorithm of the present embodiment does not depend on the level of resolution. Thus, in the following, the advanced TRW-S algorithm of the present embodiment will be described by using the phase maps φA and φB generated in the step ST40 before the decimation processing and the amplitude map (m) generated in the step ST50.
Prior to describing the advanced TRW-S algorithm, problems of the conventional TRW-S algorithm will be described by referring to
The right side of
The advanced TRW-S algorithm aims to reduce such erroneous estimation as much as possible. Each of
In the step ST200, the conventional basic TRW-S processing (i.e., TRW-S processing described in Non-Patent Document 1) is performed. In the basic TRW-S processing, the phase map φA and the phase map φB are acquired, and then the estimated true phase map (φ) is generated. In the basic TRW-S processing, the estimated true phase map (φ) is obtained by repeated calculation. In the processing of generating the finally estimated true phase map (φ), a map (hereinafter, referred to as a cost map), in which a value represented by Expression 21 below is set as a cost pixel, is generated with respect to the estimated true phase map (φ) at an intermediate stage.
C
st(bs,bt)=min(ms,mt)|bs−bt|2 Expression 21
In Expression 21, bs and bt are respectively phase terms corresponding to adjacent phases φs and φL in the estimated true phase map (φ). Further, ms and mL are adjacent amplitude values in the amplitude map (m).
Further, the cost value C represented by Expression 22 below is calculated by integrating each cost pixel of the cost map.
In the basic TRW-S, the processing completes when the cost value indicated by Expression 22 becomes equal to or less than a predetermined value, and the estimated true phase map at the time of completion is treated as the finally estimated true phase map.
In the present embodiment, subsequent to the basic TRW-S algorithm of the step ST200, the processing of the steps ST201 to ST206 described below is further performed.
In the step ST201, the processing circuitry 40 performs initial settings of the processing direction and the forward/reverse of the processing direction. In the loop from the steps ST202 to ST204, the processing circuitry 40 repeatedly performs the processing of the step ST203, while updating the processing direction and the forward/reverse of the processing direction.
Here, the setting of the processing direction is to set which of three directions orthogonal to each other is to be processed. The three directions orthogonal to each other may be, for example, the X-axis direction, the Y-axis direction, and the Z-axis direction in the physical coordinate system. Alternatively, the three directions orthogonal to each other may be a row direction, a column direction, and a thickness direction in three-dimensional image data. On the other hand, the setting of the forward/reverse of the processing direction is to set whether the processing is performed in the forward (i.e., positive) direction or the reverse (i.e., negative) direction along the set direction. Thus, when the first and second images are three-dimensional images, a modified TRW-S algorithm of the step ST203 is performed for a total of six directions, i.e., the forward direction in each of the three orthogonal directions and the reverse direction in each of the three orthogonal directions.
In the step ST300 of
In the example of
In the subsequent step ST300, when pixels each having a pixel value higher than the predetermined threshold value spatially continuously extends in the predetermined range in the generated cost map, it is determined that the cost wall has been detected in the cost map, and the cost wall is generated at the corresponding pixel position. At the outer periphery of the discontinuous region of the estimated true phase map, the value of the phase largely changes, and thus the cost pixel shows a large value as can be understood from Expression 21. Thus, the position where the cost wall is detected is mainly the outer periphery of the discontinuous region.
Note that even in the case where the value of the cost pixel exceeds a predetermined threshold value, when the position of this cost pixel is isolated in the cost map, there is a possibility of noise. Thus, this cost pixel is excluded from the target of cost wall detection.
In the next steps ST301 and ST302, the processing circuitry 40 sets the cost wall as a base point of region growing processing, and performs the region growing processing towards the opposite side in the generation direction of the cost map so as to detect an erroneously estimated region for the next substitution processing.
Next, the base point (i.e., start position) of the region growing processing is set in the inverted map. For example, the position of the pixel with the largest pixel value in the cost wall is set as the base point.
Thereafter, a region similar to the pixel at the base point is taken into (i.e., added to) the region to be enlarged by the region growing processing. The region growing processing of the present embodiment is performed in a state where a restriction condition is imposed on the region-enlargement direction. For example, when the cost map is generated in the forward direction in the X-axis direction, the region growing processing is performed such that the region is enlarged from the base point in the cost wall in the direction opposite to the generation direction of the cost map (i.e., in the reverse direction of the X-axis direction).
In the region growing processing of the present embodiment, for example, the phase of the enlarged region is compared with the phase of its outer region adjacent to the enlarged region, and a pixel in the outer region having the smallest phase difference is sequentially taken into the region to be enlarged so that the area (i.e., planar dimension) of the region to be enlarged is expanded. When the phase difference between the region to be enlarged and the outer region adjacent to the region to be enlarged becomes equal to or greater than a predetermined value at every pixel position adjacent to each other, or when the area of the region to be enlarged exceeds a predetermined area, the region growing processing is completed.
The region enlarged by the region growing processing (hereinafter, referred to as the region after growing-processing) can be considered as the region of phases erroneously estimated by the basic TRW-S processing, i.e., an erroneously estimated region.
Thus, in the step ST303, either the phase map (φA) or the phase map (φB) used in the basic TRW-S processing is substituted with the phases of the erroneously estimated region.
Thus, as shown in
In this manner, the original phase maps (TA and TB) used in the basic TRW-S processing are updated to the phase map (φA) and the substituted phase map (φB).
In the step ST304, the modified TRW-S algorithm is executed on the updated phase maps (φA and φB) under the condition that the phase of the substituted region is fixed. Since the TRW-S algorithm of the step ST304 is different from the original TRW-S algorithm under a condition that the phase of the substituted region is fixed, the TRW-S algorithm of the step ST304 is referred to as the modified TRW-S algorithm. In the step ST304, a newly estimated true phase map (φ) is generated by executing the modified TRW-S algorithm, and a new cost map (C) is generated on the basis of the newly estimated true phase map (φ).
In the step ST305, a new cost value C is calculated by integrating the respective pixel values of the new cost map (C).
Also in the cost map (lower right part in
After the processing of the step ST305, the processing returns to the step ST204 in
The estimated true phase map (φ) finally selected in this manner is provided to the processing of the step ST90 in
Further, the determination in the step ST206 is performed as required. In the step ST206, it is determined whether the cost wall has been removed or not in all the processing directions by updating the estimated true phase map (φ). If it is determined that the cost wall still remains, the above-described processing of the steps ST201 to ST205 is repeated.
The first image and the second image described above are generated by the MRI apparatus 1. In the image processing apparatus 600, the first image and the second image generated by the MRI apparatus 1 are acquired (or inputted), via an arbitrary recording medium or an arbitrary communication line by the external interface function 409 and the image acquisition function 410 shown in
The processing circuitry 40 implements the first-phase calculation function 405, the second-phase calculation function 406, the advanced TRW-S processing function 407, and the image generation function 408 in addition to the image acquisition function 410 described above. These functions of the processing circuitry 40 of the image processing apparatus 600 are the same as the functions of the MRI apparatus 1 described above. The processing circuitry 40 implements each of these functions by, for example, causing the processor included in the processing circuitry 40 to execute predetermined programs stored in the memory 41.
Even with such an image processing apparatus 600, the same effects as those of the above-described MRI apparatus 1 can be obtained.
According to at least one embodiment described above, in the technique of separating a water image and a fat image by using the TRW-S algorithm, a water component region and a fat component region can be estimated more accurately with less errors.
So far, the estimated true phase map (φ) (i.e., the first phase correction data) for detecting the discontinuity has been described as being obtained by the TRW-S algorithm. Then, in the advanced TRW-S algorithm, when a discontinuity is detected in the estimated true phase map (φ), the estimated true phase map (φ) is updated so as to reduce the discontinuity, and the second phase correction data is generated from the first phase correction data.
However, the estimated true phase map (φ), from which the discontinuity is detected, does not necessarily need to be obtained by using the TRW-S algorithm, and the estimated true phase map (φ) may be estimated by a method other than the TRW-S algorithm.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2019-068937 | Mar 2019 | JP | national |