The present application relates to ultrasound therapy systems, and particularly to the mechanical and electro-mechanical systems, e.g., bearings, motors and actuators for positioning and rotation of said therapy systems before, during and after treatment of a patient.
Ultrasonic transducers have been employed in ultrasound therapy systems to achieve therapeutic heating of diseased and other tissues. Arrays of ultrasound transducers operating to form a beam of ultrasonic energy cause a conversion of sound to thermal energy in the affected tissue areas or treatment volumes, and a subsequent beneficial rise in the temperature in the treatment volumes. With proper monitoring of the heating effect, ultrasound therapy systems can be used to treat harmful cells and to controllably destroy cancerous tumors.
As known to those skilled in the art, ultrasonic transducers are constructed and operated to take electrical power and produce ultrasound energy waves from a surface of a transducer element in a process generally referred to as transduction. The nature and extent of the transduction depends on the material used to construct the transducers, transducer geometry, and the electrical input to the transducers. A common material used in construction of ultrasound transducers is piezo-electric transducer crystal material (lead zirconate titanate, PZT), which comes in several forms.
One challenge in constructing clinically usable systems for image-guided therapy is in constructing the electrical, mechanical, and electro-mechanical support and driving systems for moving and rotating the components of the system.
It is therefore useful to have a motorized apparatus that is compatible with image-guided therapy environments and which can be used to drive an ultrasound therapy applicator for use in such environments.
Embodiments hereof are directed to systems and methods for providing a thermal therapy applicator and supporting components that is suitable for ultrasonic thermal therapy treatments in an image-guided environment such as in magnetic resonance imaging (MRI) environments.
Aspects of the present disclosure provide motors, bearings, and other electrical, mechanical and electro-mechanical support systems for driving a thermal therapy applicator.
Some embodiments are directed to magnetic resonance imaging (MRI) compatible apparatus for moving a thermal therapy applicator within a patient, comprising a mechanical platform that supports said thermal therapy applicator; a plurality of translators for translation of said thermal therapy applicator along a corresponding plurality of axes so as to position an ultrasound energy source of said thermal therapy applicator proximal to a diseased tissue region within said patient; and a motor that provides a rotational drive capability to rotate said thermal therapy applicator about an axis of said applicator so as to orient said ultrasound energy source of said thermal therapy applicator about said axis of said applicator, said motor comprising materials adapted for use in or proximal to a magnetic environment of a magnetic resonance imaging (MRI) system.
Other embodiments are directed to thermal therapy system for applying a thermal therapy to a patient, comprising an ultrasonic energy source disposed proximal to a first end of an elongated thermal therapy applicator; a base portion of said thermal therapy applicator proximal to a second end of said thermal therapy applicator; a cradle that supports said base portion, said cradle allowing for rotation of said thermal therapy applicator about an axis of said elongated thermal therapy applicator so that said ultrasonic energy source can be directed towards a programmed direction about said axis; and a motor comprising magnetically-compatible materials for rotating said thermal therapy applicator about said axis substantially without interference with operation of a magnetic resonance imaging (MRI) system in use on said patient.
For a fuller understanding of the nature and advantages of the present invention, reference is be made to the following detailed description of preferred embodiments and in connection with the accompanying drawings, in which:
As discussed in related applications by the present inventors and assignee, an ultrasound thermal therapy device may be externally controlled so that a therapeutic ultrasound array may be rotated about an axis within a diseased region of a patient. The rotation about an axis may be substantially along an axis of an anatomical passageway such as the male urethra in the example of treating a diseased prostate.
Motorized and computer-controlled movement, positioning and/or rotation of the treatment applicator within the patient may be desired. In the case where the treatment is monitored using magnetic resonance imaging (MRI), the apparatus for positioning and rotating the treatment applicator should be immune to the magnetic field effects of the MRI system, and the treatment applicator controls should not substantially interfere with the MRI images.
Motors relying on magnetic force to provide prime movement are not ideal for use near the bore of an MRI system due to the extreme magnetic fields of the system. Alternative approaches include pneumatic motors, hydraulic motors and piezo-electric motors. The embodiments presented below are directed primarily to a piezo-electric motor and system, but may be in some aspect generalized to other designs.
By way of overview of the general clinical application,
Master computer 100 is adapted for coupling to other systems and components through a computer interface connector 120. Connection 120 carries data and information to and from master computer 100 and may comprise standard or special-purpose electrical wiring connection cables, such as serial connection cables or the like. Also, connection 120 may be achieved wirelessly as known to those skilled in the art of wireless communication, and may further be achieved by way of multiple connections, over a network, or by another suitable method.
In some embodiments, master computer 100 is coupled through connection 120 to a power control unit 130. Power control unit 130 may be implemented as a stand-alone hardware apparatus but may be implemented as a part of master computer 100, e.g., by being built onto a special card in a computer or server system that accommodates such hardware components.
Power control unit 130 may specifically include at least a processor adapted for processing machine or program instructions, which may be provided to the processor from another component of system 10 and may be stored on a memory device in power control unit 130. Circuitry including analog and/or digital circuitry may be operated within power control unit 130 so as to determine an output power to one or more ultrasound therapy transducer elements in an ultrasound therapy apparatus 150.
In some embodiments, power control unit 130 may deliver controlled electrical driving signals to a plurality of ultrasound transducer elements (e.g., PZT array elements) in ultrasound therapy apparatus 150. The driving signals may be controlled to deliver a programmed amount of power to each element or to groups of elements of therapy apparatus 150. The driving signals may also be controlled so as to provide a determined driving voltage, current, amplitude, waveform, or frequency to said ultrasonic transducers of therapy apparatus 150. Such electrical driving signals are carried from power control unit 130 to the ultrasound therapy apparatus 150 over suitable wires, cables, or buses 140. Appropriate plug interfaces or connectors may be included so as to mate the various ends of the connectors or buses to and from their associated components.
In operation, ultrasound therapy apparatus 150 includes a portion 155 that is inserted into a portion of a patient's body to deliver a suitable dose of ultrasound energy to tissue in a diseased region of the patient's body.
The patient and the ultrasound therapy apparatus 150 are generally disposed in an imaging volume 160 such as a magnetic resonance imaging (MRI) apparatus, which can provide real-time images of the relevant parts of the patient, e.g., the treatment volume to master computer 100 or display and user interface 110. In some embodiments, real-time monitoring of the thermal therapy is performed so that a clinical operator can monitor the progress of the therapy within the treatment volume or diseased tissue. Manual or automated changes can be made to the power signals from power control unit 130 based on input from the results and progress of the treatment.
The feedback and coupling of the treatment system components to the control components in system 10 can be used to ensure that an optimum radio frequency (RF) power signal is provided to each element of an ultrasound array 155 used in treatment of diseased tissues. Some examples include treatment of prostate cancer tumors in male patients using MRI guided ultrasound therapy applications.
RF power control unit 130 may include separate circuit cards having individual processors, amplifiers, filters and other components to achieve the desired driving power output to the elements of ultrasound array 155 of ultrasound treatment apparatus 150. Alternatively, a single processor may be employed to control the behavior of the various power channels to each array element.
In the embodiments described below, a fluid system is used to control the temperature of the thermal therapy apparatus or applicator and/or to control a temperature of a region of tissue proximal to the therapy applicator.
An exemplary MRI-compatible motor 20 is illustrated in perspective in
In some embodiments, the two opposing piezo drives 210 and 220 are electrically powered so that they operate in phase with one another. For example, the two piezo drives may be wired in parallel to a driving electrical power source.
The design of motor system 20 is such that the two opposing piezo drivers 210 and 220 are in balance, balancing one another, and allowing movement of the motor with minimal friction or resistance. The system may be tuned before use so that the piezo drivers are optimally located and disposed. Furthermore, in some embodiments, the balancing and setup of the piezo drivers is done independently from one another and/or independently from setup of the position sensing encoder, described below. The balancing may be accomplished while the motor is turning, fixing one driver then adjusting the other.
It should be noted that using two (or more) opposing drivers (e.g., 310, 320) to rotate motor system 30 allows for a balanced and even and smooth delivery of power. In some embodiments this avoids unwanted displacement or asymmetrical delivery of torque to shaft 330 as might occur if only one driver was used. In some aspects, the use of a pair of opposing piezo electric, or similar, drivers of the present preferred embodiments allows the motor bearings to be thrust roller bearings rather than a conventional bearing that uses highly precise machined components that prevent side-to-side movement.
In some embodiments, the position encoder 440 comprises a grating disk and a pick-up head. The separation between these two components may be set to a suitable distance, e.g., 10-15 thousandths of an inch. The distance between these two components can be tuned using shims substantially without changing any aspect of the inner central shaft or the bearings.
The position encoder 440 may be designed such that the signals are substantially or purely sinusoidal in some embodiments. Sinusoidal signals may not interfere with the MRI system operation as much as other signals. This is consistent with the normal position encoding done in an MRI system.
Some elements of the motor system that can be seen in
For a better understanding of how the present MRI-compatible motor system is used in a therapeutic system,
A thermal therapy applicator includes a handle portion 600 and an elongated portion 612, which is inserted into a patient to be proximal to and/or within a volume of diseased tissue such as the male prostate. Region “A” of the thermal therapy applicator will be illustrated below.
A mechanical positioning apparatus 610 assists clinical operators in positioning the treatment applicator so it can be inserted into a patient's body. The mechanical positioning apparatus 610 is supported on a rigid support plate or platform 620 that in turn may be fixed to a treatment gurney, platform, or table near the patient. Positioning knobs 630 allow for the needed degrees of freedom to position and set the angle of the treatment applicator. For example, the applicator may be moved towards or away from the patient, and may be moved up and down to a determined height, etc. The positioners 630 may be adapted to be electro-mechanical and machine driven if needed, or may be manually set by an operator.
The MRI-compatible motor system 640 can be seen at one end of the therapy system 60, and is used to provide rotational force to turn a shaft that transmits torque down to a set of bearings and gears of therapy applicator 600, as will be seen in detail “A” on the following figure. This allows for cradling of the elongated applicator and for controlled rotation of elongated portion 612 within the volume to be treated so that the treatment can treat a volume surrounding the distal end of elongated portion 612 to the right of
It is useful to be able to attach and disconnect fluid and electrical connections to the therapy applicator apparatus. For example, temperature control circulation fluids can be provided to and from the apparatus as described in other applications by the present applicant. Also, electrical power and control connections are used in driving the ultrasound applicator array and monitoring certain parameters. Therefore, in some aspects, it is provided by the present embodiments to allow connection and use of electrical and fluid circuits in the present system substantially while using the system, or during and/or before and/or after a treatment. The apparatus may be translated and it may be rotated as necessary to accomplish the treatment within a patient without needing to disconnect or untangle wires and tubing connected to the apparatus. One benefit of this is that the fluid within the fluid tubing can remain sterile and not broken or exposed to the open environment once in use.
The present discussion should not preclude other equivalent or reasonably similar embodiments, and those readers skilled in the art would appreciate that the present embodiments may be generalized to include other types of drivers and components that may be substituted or integrated into or with the present system. The electrical power to drive the prime movers may be provided by a computer controlled circuit and may be programmably adapted to accommodate a therapeutic procedure, including by real-time control of the movement of the motor system. In some embodiments, the movement may be varied as a function of time to change the motor's speed or direction of rotation, and may allow for stopping of the rotation as well when needed.
The present invention should not be considered limited to the particular embodiments described above. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable, will be readily apparent to those skilled in the art to which the present invention is directed upon review of the present disclosure.
Number | Date | Country | |
---|---|---|---|
61313792 | Mar 2010 | US |