MRI conditionally safe lead with low-profile conductor for longitudinal expansion

Information

  • Patent Grant
  • 9050457
  • Patent Number
    9,050,457
  • Date Filed
    Thursday, February 6, 2014
    11 years ago
  • Date Issued
    Tuesday, June 9, 2015
    10 years ago
Abstract
An implantable electrical lead includes a lead body and a multi-layer coil conductor extending within the lead body. The multi-layer coil conductor includes a first coil layer and a second coil layer disposed about the first coil layer. The first and second coil layers are configured such that the multi-layer coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the multi-layer coil conductor.
Description
TECHNICAL FIELD

Various embodiments of the present disclosure generally relate to implantable medical devices. More specifically, embodiments of the present disclosure relate to MRI conditionally safe lead conductors.


BACKGROUND

When functioning properly, the human heart maintains its own intrinsic rhythm and is capable of pumping adequate blood throughout the body's circulatory system. However, some individuals have irregular cardiac rhythms, referred to as cardiac arrhythmias, which can result in diminished blood circulation and cardiac output. One manner of treating cardiac arrhythmias includes the use of a pulse generator (PG) such as a pacemaker, an implantable cardioverter defibrillator (ICD), or a cardiac resynchronization (CRT) device. Such devices are typically coupled to a number of conductive leads having one or more electrodes that can be used to deliver pacing therapy and/or electrical shocks to the heart. In atrioventricular (AV) pacing, for example, the leads are usually positioned in a ventricle and atrium of the heart, and are attached via lead terminal pins to a pacemaker or defibrillator which is implanted pectorally or in the abdomen.


Magnetic resonance imaging (MRI) is a non-invasive imaging procedure that utilizes nuclear magnetic resonance techniques to render images within a patient's body. Typically, MRI systems employ the use of a magnetic coil having a magnetic field strength of between about 0.2 to 3 Teslas. During the procedure, the body tissue is briefly exposed to radio frequency (RF) pulses of electromagnetic energy in a plane perpendicular to the magnetic field. The resultant electromagnetic energy from these pulses can be used to image the body tissue by measuring the relaxation properties of the excited atomic nuclei in the tissue. In some cases, imaging a patient's chest area may be clinically advantageous. In a chest MRI procedure, implanted pulse generators and leads may also be exposed to the applied electromagnetic fields.


SUMMARY

The various embodiments of the present disclosure relate to an implantable electrical lead including a multi-layer coil conductor configured such that the lead exhibits a predetermined axial stiffness or bending stiffness.


In Example 1, an implantable electrical lead includes a lead body and a multi-layer coil conductor extending within the lead body. The multi-layer coil conductor includes a first coil layer and a second coil layer disposed about the first coil layer. The first and second coil layers are configured such that the multi-layer coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the multi-layer coil conductor.


In Example 2, the implantable electrical lead according to Example 1, wherein each of the first and second coil layers includes a filar having a filar thickness, a coil outside diameter, and a coil pitch, and wherein one or more of the filar thickness, the coil outside diameter, and the coil pitch are such that the axial stiffness of the multi-layer coil conductor is substantially equal to the axial stiffness of the lead body adjacent to the multi-layer coil conductor.


In Example 3, the implantable electrical lead according to either Example 1 or Example 2, wherein a filar material and a coil wind geometry of the first and second coil layers are such that the axial stiffness of the multi-layer coil conductor is substantially equal to the axial stiffness of the lead body adjacent to the multi-layer coil conductor.


In Example 4, the implantable electrical lead according to any of Examples 1-3, wherein the multi-layer coil conductor is mechanically and electrically connected to an electrode.


In Example 5, the implantable electrical lead according to any of Examples 1-4, wherein the multi-layer coil conductor is configured to allow the electrode to move axially relative to a proximal connector when under tensile load.


In Example 6, the implantable electrical lead according to any of Examples 1-5, further comprising a layer of insulating material between the first and second coil layers.


In Example 7, the implantable electrical lead according to any of Examples 1-6, wherein each filar of the first and second coil layers is individually insulated.


In Example 8, an implantable electrical lead includes a lead body having a longitudinal body lumen, an electrode coupled to the flexible body in the distal region, and a multi-layer coil conductor extending within the longitudinal body lumen and coupled to the electrode. The multi-layer coil conductor includes a first coil layer and a second coil layer disposed about the first coil layer. At least one parameter of the first and the second coil layer is configured such that the lead exhibits a predetermined axial stiffness or bending stiffness. The at least one parameter of the first and second coil layers is at least one of a coil filar thickness, a number of filars, a filar material, a coil winding direction, or a coil diameter. The first and second coil layers are configured such that the multi-layer coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the multi-layer coil conductor.


In Example 9, the implantable electrical lead according to Example 8, further comprising a third coil layer disposed around the second coil layer, wherein at least one parameter of the third coil layer is configured such that the lead exhibits a predetermined axial bending stiffness.


In Example 10, the implantable electrical lead according to either Example 8 or Example 9, wherein each of the first and second coil layers is formed from one or more filars of a silver core drawn filled tube (DFT) wire having an MP35N cladding.


In Example 11, the implantable electrical lead according to any of Examples 8-10, wherein the multi-layer coil conductor is mechanically and electrically connected to a second electrode coupled to the lead body.


In Example 12, the implantable electrical lead according to any of Examples 8-11, wherein the multi-layer coil conductor allows the second electrode to move axially relative to a proximal connector when under tensile load.


In Example 13, the implantable electrical lead according to any of Examples 8-12, wherein each of the filars of the first and second coil layers is individually insulated.


In Example 14, an implantable electrical lead includes a lead body and a multi-layer coil conductor extending within the lead body. The multi-layer coil conductor includes a first coil layer and a second coil layer disposed about the first coil layer. At least one parameter of the first and the second coil layer is configured such that the multi-layer coil conductor has a pre-determined spring constant along at least a portion of its length. The first and second coil layers are configured such that the multi-layer coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the multi-layer coil conductor.


In Example 15, the implantable electrical lead according to Example 14, wherein the pre-determined spring constant is such that the lead returns to its original length after axial elongation of the multi-layer coil conductor.


In Example 16, the implantable electrical lead according to either Example 14 or Example 15, wherein the multi-layer coil conductor is mechanically and electrically connected to an electrode coupled to the lead body.


In Example 17, the implantable electrical lead according any of Examples 14-16, wherein the multi-layer coil conductor is configured to allow the electrode to move axially relative to a proximal connector when under tensile load.


In Example 18, the implantable electrical lead according to any of Examples 14-17, wherein the multi-layer coil further comprises a third coil layer disposed around the second coil layer, wherein at least one parameter of the third coil layer is configured such that the lead exhibits a predetermined axial bending stiffness.


In Example 19, the implantable electrical lead according to any of Examples 14-18, further comprising a layer of insulating material between the first and second coil layers.


In Example 20, the implantable electrical lead according to any of Examples 14-19, wherein each filar of the first and second coil layers is individually insulated.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a medical system including an MRI scanner, and an implantable cardiac rhythm management system implanted within a torso of a human patient according to various embodiments of the present invention;



FIG. 2A is a schematic view of an illustrative pulse generator and lead implanted within the body of a patient which may be used in accordance with some embodiments of the present invention;



FIG. 2B is a schematic view showing a simplified equivalence circuit for the lead of FIG. 2A



FIG. 3 is a schematic view illustrating an exemplary lead that may be used in accordance with one or more embodiments of the present invention;



FIG. 4 is a transverse cross-sectional view of the lead of FIG. 3 taken along the line 4-4 in FIG. 3; and



FIG. 5 illustrates invention detail of a multi-layer coil conductor utilized in the lead of FIG. 3 according to an embodiment of the present invention.





The drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be expanded or reduced to help improve the understanding of the embodiments of the present invention. While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION

As explained in further detail below, various embodiments of the present invention relate to cardiac rhythm management (CRM) systems incorporating new lead designs advantageously adapted for operation in a magnetic resonance imaging (MRI) environment. In some embodiments, the leads including conductor designs configured to provide suitable electrical performance for delivering pacing and/or defibrillation shock therapy and to minimize the lead's reaction to applied electromagnetic energy during MRI procedures.


In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. It will be apparent, however, to one skilled in the art that embodiments of the present invention may be practiced without some of these specific details.


While, for convenience, some embodiments are described with reference to IMDs in the presence of MRI scanners, embodiments of the present invention may be applicable to various other physiological measurements, treatments, IMD devices, lead types, and other non-invasive examination techniques in which conductive leads are exposed to time varying magnetic fields. As such, the applications discussed herein are not intended to be limiting, but instead exemplary. In addition, various embodiments are applicable to all levels of sensory devices from a single IMD with a sensor to large networks of sensory devices.



FIG. 1 is a schematic illustration of a medical system 100 including an MRI scanner 110, an implantable cardiac rhythm management (CRM) system 115 implanted within a torso of a human patient 120, and one or more external device(s) 130 according to various embodiments. The external device(s) 130 are capable of communicating with the CRM system 115 implanted within the patient 120. In the embodiment shown in FIG. 1, the CRM system 115 includes a pulse generator (PG) 140 and a lead 150. During normal device operation, the PG 140 is configured to deliver electrical therapeutic stimuli to the patient's heart 160 for providing tachycardia ventricular fibrillation, anti-bradycardia pacing, anti-tachycardia pacing, cardiac resynchronization therapy, and/or other types of therapy.


Thus, in the illustrated embodiment, the PG 140 can be an implantable device such as a pacemaker, an ICD, a cardiac resynchronization therapy (CRT) device, a CRT device with defibrillation capabilities (a CRT-D device), or a comparable device. The PG 140 can be implanted subcutaneously within the body, typically at a location such as in the patient's chest. In some embodiments, PG 140 can be implanted in or near the abdomen.


The external device(s) 130 may be a local or remote terminal or other device (e.g., a computing device and/or programming device), operable to communicate with the PG 140 from a location outside of the patient's body. According to various embodiments, external device 130 can be any device external to the patient's body that is telemetry enabled and capable of communicating with the PG 140. Examples of external devices can include, but are not limited to, programmers (PRM), in-home monitoring devices, personal computers with telemetry devices, MRI scanner with a telemetry device, manufacturing test equipment, or wands. In some embodiments, the PG 140 communicates with the remote terminal 130 via a wireless communication interface. Examples of wireless communication interfaces can include, but are not limited to, radio frequency (RF), inductive, and acoustic telemetry interfaces.



FIG. 2A is a more detailed schematic view of the CRM system 115 including the illustrative PG 140 equipped with the lead 150 implanted within the body of a patient. In the embodiments depicted, CRM system 115 includes PG 140 implanted near the patient's heart 160 and lead 150 having a distal portion implanted with the patient's heart 160. As can be seen in FIG. 2A, the heart 160 includes a right atrium 210, a right ventricle 220, a left atrium 230, and a left ventricle 240.


The lead 150 has a flexible body 200 including a proximal region 205 and a distal region 250. As shown, the lead 150 is coupled to the PG 140, and the distal region 250 of the lead body 200 is at least partially implanted at a desired location within the right ventricle 220. As further shown, the lead 150 includes a pair of coil electrodes 255, 257 along the distal region 250, such that when implanted as shown in FIG. 2A, they are positioned within the right ventricle 220 and right atrium 210, respectively. As explained and illustrated in further detail below, the lead 150 includes one or more electrical conductors within the lead body 200 (not visible in FIG. 2A) electrically coupling the electrodes 255, 257 to circuitry and other electrical components within the PG 140 for transmitting intrinsic cardiac signals from the heart 160 to the PG 140 and also for transmitting electrical shocks or low-voltage pacing stimuli to the heart 160 via the electrodes 255, 257 or additional electrodes (not shown in FIG. 2A).


Although the illustrative embodiment depicts only a single lead 150 inserted into the patient's heart 160, in other embodiments multiple leads can be utilized so as to electrically stimulate other areas of the heart 160. In some embodiments, for example, the distal portion of a second lead (not shown) may be implanted in the right atrium 210. In addition, another lead may be implanted within the coronary venous system to facilitate pacing the left ventricle, i.e., in a CRT or CRT-D system providing bi-ventricular pacing, as is known in the art. Other types of leads such as epicardial leads may also be utilized in addition to, or in lieu of, the lead 150 depicted in FIGS. 1-2. In short, the various embodiments of the present invention contemplate any multi-lead combinations and configurations for use in CRM systems 115, whether now known or later developed.


During operation, the lead 150 conveys electrical signals between the heart 160 and the PG 140. For example, in those embodiments where the PG 140 has pacing capabilities, the lead 150 can be utilized to deliver electrical therapeutic stimulus for pacing the heart 160. In those embodiments where the PG 140 is an ICD, the lead 150 can be utilized to deliver high voltage electric shocks to the heart 160 via the electrodes 255, 257 in response to an event such as a ventricular fibrillation.


As explained in detail below, various embodiments of the present invention relate to new lead designs that allow for improved mechanical characteristics and safe operation in an MRI environment. In some embodiments, traditional conductor cables are replaced with low profile multi-layer coil conductors. The multi-layer coil conductors allow lead designers to maintain a small lead profile in pace/sense lead applications while better controlling axial elongation of the lead under tensile load.



FIG. 2B is a schematic view showing a simplified equivalence circuit 260 for the lead 150 of FIG. 2A, representing the RF energy picked up on the lead 150 from RF electromagnetic energy produced by an MRI scanner. As shown in FIG. 2B, voltage (Vi) 265 in the circuit 260 represents an equivalent source of energy picked up by the lead 150 from the MRI scanner. During magnetic resonance imaging, the length of the lead 150 functions similar to an antenna, receiving the RF energy that is transmitted into the body from the MRI scanner. Voltage (Vi) 265 in FIG. 2B may represent, for example, the resultant voltage received by the lead 150 from the RF energy. The RF energy picked up by the lead 150 may result, for example, from the rotating RF magnetic field produced by an MRI scanner, which generates an electric field in the plane perpendicular to the rotating magnetic field vector in conductive tissues. The tangential components of these electric fields along the length of the lead 150 couple to the lead 150. The voltage (Vi) 265 is thus equal to the integration of the tangential electric field (i.e., the line integral of the electric field) along the length of the lead 150.


The ZI parameter 270 in the circuit 260 represents the equivalent impedance exhibited by the lead 150 at the RF frequency of the MRI scanner. The impedance value ZI 270 may represent, for example, the inductance or the equivalent impedance resulting from the parallel inductance and the coil turn by turn capacitance exhibited by the lead 150 at an RF frequency of 64 MHz for a 1.5 Tesla MRI scanner, or at an RF frequency of 128 MHz for a 3 Tesla MRI scanner. The impedance ZI of the lead 150 is a complex quantity having a real part (i.e., resistance) and an imaginary part (i.e., reactance).


Zb 275 in the circuit 260 may represent the impedance of the body tissue at the point of lead contact. Zc 280, in turn, may represent the capacitive coupling of the lead 150 to surrounding body tissue along the length of the lead 150, which may provide a path for the high frequency current (energy) to leak into the surrounding tissue at the RF frequency of the MRI scanner. Minimizing the absorbed energy (represented by source Vi 265) reduces the energy that is transferred to the body tissue at the point of lead contact with the body tissue.


As can be further seen in FIG. 2B, the lead 150 has some amount of leakage into the surrounding tissue at the RF frequency of the MRI scanner. As further indicated by 275, there is also an impedance at the point of contact of the lead electrodes 255, 257 to the surrounding body tissue within the heart 160. The resulting voltage Vb delivered to the body tissue may be related by the following formula:

Vb=Vi Zbe/(Zbe+ZI), where Zbe=Zb in parallel with Zc.


The temperature at the tip of the lead 150 where contact is typically made to the surrounding tissue is related in part to the power dissipated at 275 (i.e., at “Zb”), which, in turn, is related to the square of Vb. To minimize temperature rises resulting from the power dissipated at 275, it is thus desirable to minimize Vi (265) and Zc (280) while also maximizing the impedance ZI (270) of the lead 150. In some embodiments, the impedance ZI (270) of the lead 150 can be increased at the RF frequency of the MRI scanner, which aids in reducing the energy dissipated into the surrounding body tissue at the point of contact 275.


In the various embodiments described in further detail below, the impedance of the lead 150 can be increased by adding inductance to the lead 150 and/or by a suitable construction technique. For example, in various embodiments, the inductance of the lead 150 is increased by selectively configuring the conductors used to supply electrical energy to the electrodes 255, 257.



FIG. 3 illustrates in further detail the exemplary lead 150 that may be used in accordance with one or more embodiments of the present invention. As shown in FIG. 3, the lead body 200 includes a proximal end 305, and the lead 150 further includes a connector assembly 310 coupled to the proximal end 305 of the lead body, the coil electrodes 255, 257, and a tip electrode 312 which operates in the illustrated embodiment as a pace/sense electrode. Depending on the functional requirements of the PG 140 (see FIG. 1), and the therapeutic needs of the patient, the distal region 250 of the lead 150 may include additional electrodes. For example, in some embodiments, the pair of coil electrodes 255, 257 can be used to function as shocking electrodes for providing a defibrillation shock to the heart 160. In some embodiments, the lead 150 can include a low-voltage (e.g., ring) electrode proximal to the distal tip of the lead 150 which is also operable as a pace/sense electrode, which can be included in addition to, or in lieu of, the tip electrode 312. In short, the lead 150 can incorporate any number of electrode configurations within the scope of the embodiments of the present invention.


In the illustrated embodiment, the connector assembly 310 includes a connector body 320 and a terminal pin 325. The connector assembly 310 is coupled to the lead body 200 and can be configured to mechanically and electrically couple the lead to a header on PG 140 (see FIG. 1 and FIG. 2). In various embodiments, the terminal pin 325 extends proximally from the connector body 320 and in some embodiments is coupled to an inner conductor (not shown in FIG. 3) that extends longitudinally through the lead body 200 to the tip electrode 312. In some embodiments, the terminal pin 325 can include an aperture extending therethrough communicating with a lumen defined by the inner conductor coil in order to accommodate a guide wire or an insertion stylet.


In various embodiments, the tip electrode 312 is in the form of an electrically active fixation helix at the distal end of the lead 150. In some embodiments, the tip electrode 312 can be an extendable/retractable helix supported by a mechanism to facilitate longitudinal translation of the helix relative to the lead body as the helix is rotated. In those embodiments, the terminal pin 325 may be rotatable relative to the connector body 320 and the lead body 200 such that rotation of the terminal pin 325 relative to the lead body 200 causes the inner conductor, and in turn, the helical tip electrode to rotate and translate longitudinally relative to the lead body 200. Various mechanisms and techniques for providing extendable/retractable fixation helix assemblies (both electrically active and passive) are known to those of ordinary skill in the art, and need not be described in greater detail here.


The pace/sense electrode (whether a solid tip electrode as described above or an active-fixation helix such as shown in FIG. 3) can be made of any suitable electrically conductive material such as Elgiloy, MP35N, tungsten, tantalum, iridium, platinum, titanium, palladium, stainless steel, as well as alloys of any of these materials.


The coil electrodes 255, 257 can take on any configuration suitable for delivering a relatively high-voltage therapeutic shock to the heart for defibrillation therapy. In various embodiments, the coil electrodes 255, 257 can be made from any suitable electrically conductive material such as those discussed in the preceding paragraph. The lead 150 also includes a conductor (not shown in FIG. 3) within the lead body 200 electrically connecting the coil electrodes 255, 257 to an electrical contact on the connector assembly 310, which in turn is configured to electrically couple the coil electrodes 255, 257 to electrical components within the PG 140.


In FIG. 4 is a transverse cross-sectional view of the lead 150 taken along the line 4-4 in FIG. 3. As shown in FIG. 4, the lead body 200 includes an inner tubular member 380 and an outer tubular member 385 disposed over and bonded to the inner tubular member 380. The tubular members 380, 385 can be made from any number of flexible, biocompatible insulative materials, including without limitation, polymers such as silicone and polyurethane, and copolymers thereof. As further shown, the inner tubular member 380 includes a plurality of lumens 390, 395, 400, and conductors 410, 415, and 420 are disposed, respectively, in the lumens 390, 395, and 400. Each of the conductors 410, 415 and 420 extends longitudinally within the respective lumen 390, 395, 400, and is electrically coupled to an electrode (e.g., the electrodes 312, 255, or 257 in FIG. 3) and also to an electrical contact of the connector assembly 310.


In some embodiments, the lead body 200 does not include separate, coaxial tubular members, but instead, includes only a single tubular member (e.g., the member 380) including one or more longitudinal lumens for housing the requisite conductors. For illustrative purposes, the three lumens 390, 395, 400 of the inner tubular member 380 are shown having different diameters. In other embodiments, however, the relative dimensions and/or locations of the lumens 390, 395, 400 may vary from that shown. In addition, the inner tubular member 380 may include a greater or lesser number of lumens, depending on the particular configuration of the lead 150. For example, the inner tubular member 380 may include a greater number of lumens to house additional conductor wires and/or electrode coils within the lead 150 for supplying current to other shocking coils and/or pace/sense electrodes.


In the illustrated embodiment, the conductor 410 is a single layer coil conductor such as would be used in conjunction with a conventional, low-voltage pace/sense electrode, e.g., the tip electrode 312. In some embodiments, for example, the coil conductor 410 is configured to have a relatively high impedance when exposed to electromagnetic energy such as that present during an MRI scan. In various such embodiments, the coil conductor 410 is configured according to the various embodiments described, for example, in U.S. Patent Application Publication No. 2009/0198314, which is incorporated herein by reference in its entirety. The increased impedance aids in reducing the energy dissipated into the surrounding body tissue at or near the lead electrode(s). In various embodiments, the conductor 410 and the lumen 390 are omitted.


As explained in further detail below, the conductors 415 and 420 are multi-layer conductor assemblies incorporated into the lead 150 to provide a conditionally-safe MRI-compatible lead design, as well as to provide improved fatigue resistance and other mechanical properties during delivery and under chronic operating conditions. In various embodiments, the multi-layer coil conductors 415, 420 include multiple coil layers having selectively controlled coil properties (e.g., pitch, outside diameter, filar thickness, etc.) to make a highly inductive, highly conductive, small diameter conductor that has suitable mechanical characteristics for a stimulation/sensing lead body.


In the illustrated embodiment, the coil conductor 415 is a three-layer conductor and the coil conductor 420 is a two-layer conductor. In various embodiments, multi-layer coil conductors utilizing more than three coil layers can be utilized. In various embodiments, the single layer coil conductor 410 can be replaced with a multi-layer coil conductor similar or identical to the coil conductor 415 and/or 420.



FIG. 5 is a more detailed side view of the coil conductor 420 according to one embodiment of the present invention. As shown in FIG. 5, the multi-layer coil conductor 420 is a three-layer coil conductor 420 including an outer coil layer 422, a middle coil layer 425 and an inner coil layer 430. The outer coil layer 422 is disposed about the middle coil layer 425 which is disposed about the inner coil layer 430. The outer, middle, and inner coil layers 422, 425, 430 are electrically coupled to one another in parallel at least at their the proximal ends (i.e., at or near the connector assembly) as well as at their distal ends (i.e., at the electrode 255), so as to provide parallel conductive paths between the connector assembly 310 and the electrode 255. In various embodiments, the parameters of the coil layers 422, 425 and 430 are configured such that the multi-layer coil conductor 420 has a maximum DC resistance of about 3.0-3.5 ohms, and a high impedance when exposed to an external alternating magnetic field characterized by frequencies associated with MRI scans. It will be appreciated that the two-layer coil conductor 415 can be configured in substantially the same manner as the coil conductor 420 shown in FIG. 5 while only including two coil conductor layers.


In some embodiments, the outer layer 422 of the coil conductor 420 can be wound to coil diameter Do of less than about 0.013 inches. In some embodiments, the outer layer is close pitched and can have one or more filars having a maximum filar thickness of about 0.004 inches. In accordance with various embodiments, the outer layer may or may not be present depending on the desired application of the lead. For example, in some cases, the outer layer may be used to change the resistance of the multi-layer coil conductor 420. In at least one embodiment, the outer layer 422 may have a filar thickness of from about 0.001 to about 0.004 inches.


The middle layer 425 of the coil conductor 420 is close pitched and can be wound to a coil diameter Dm less than the inner diameter of the outer coil layer 422. In some embodiments, the middle layer can have one or more filars having a maximum filar thickness of from about 0.0007 to about 0.003 inches.


The inner coil layer 430 of the coil conductor 420 is close pitched and can be wound to a coil diameter Di less than the inner diameter of the middle layer 425. In some embodiments, the inner layer can have one or more filars having a maximum filar thickness of from about 0.0007 to about 0.001 inches.


Of course, in various other embodiments, multi-layer coil conductor 420 utilizes different ranges of dimensions and other parameters (e.g., filar count) of the respective coil layers 422, 425, 430 depending on the operational needs for the lead 150.


In the various embodiments, the filar material can be any suitable material exhibiting the desired electrical and mechanical properties. In one embodiment, the filars of the outer, middle, and/or inner coil layers 422, 425, 430 are made of drawn filled tube (DFT) wire including a silver core (about 40%) with an MP35N or tantalum cladding. In another embodiment, the outer, middle, and/or inner coil layers 422, 425, 430 are made of DFT wire including a tantalum core with a MP35N cladding. The coil layers 422, 425, 430 may be comprised of the same or different materials, and each of the coil layers 422, 425, 430 may include different silver fill levels.


In various embodiments, the filars of each layer of the coil conductor 420 are wound in the same pitch direction. That is, the individual filars of each coil layer are wound to have either a right-hand pitch or a left-hand pitch when viewing the coil along its longitudinal axis.


In various embodiments, one or more of the coil layers 422, 425, 430 has a variable coil pitch along its length, which operates to de-tune the coil conductor 420 to reduce the effect of externally applied electromagnetic radiation (i.e., due to an MRI chest scan).


In various embodiments, the individual coil layers 422, 425 and 430 can be separately optimized to each exhibit a different inductance, e.g., by modifying the filar thickness, pitch, and/or coil layer diameter, to further modify the performance of the lead 150 under MRI conditions.


Some embodiments of the present invention include one or more layers of insulation between one or more of the adjacent coil layers 422, 425 or 430. Alternatively, or additionally, in various embodiments, the individual filars or the coil layers 422, 425, and/or 430 are individually insulated. Any suitable insulation material can be utilized, if desired. Exemplary insulating materials for the filars and/or between the coil layers include ethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), silicone, and the copolymers of the foregoing.


The various embodiments of the lead 150 described above, advantageously minimize induced currents in the lead conductors resulting from exposure to external MRI electromagnetic fields. This is in contrast to conventional lead systems utilizing stranded cable conductors to transmit the shocking currents from the PG to the shocking electrodes. While such cable conductors provide excellent electrical performance for delivering anti-tachycardia therapy, stranded cable conductors also have a low impedance and thus are susceptible to generation of induced currents when exposed to an alternating electromagnetic field such as that present during an MRI scan. Various embodiments of the present invention can result in lead 150 exhibiting a temperature rise when exposed to MRI radiation of approximately half that experienced utilizing traditional high energy cables which are conventionally utilized to supply energy to high-voltage shocking coils in defibrillation leads. The high impedance conductor configurations for the lead 150 described above minimize the effects of MRI radiation while still providing suitable electrical performance for use in anti-tachycardia therapy applications.


In addition, In accordance with some embodiments, the design parameters of the multi-layer coil conductors can be tuned to control the mechanical properties, e.g., effective spring constant and thus stiffness of the overall lead assembly, bending stiffness, and the like. Such tuning may enable the user minimize stresses (loads) on adjacent (distal) polymer components, minimize the potential for shear bond failure, facilitate/control the lead bias shape, and minimize the impact of axial length tolerance stack-up during assembly, in both low and high voltage lead applications. For example, in various embodiments, the shocking coils 255, 257 (see FIGS. 2A and 3) are omitted, and the lead 150 includes only one or more low-voltage pace/sense electrodes such as the tip electrode 312 and additional ring electrodes along the lead 150. In such embodiments, multi-layer coil conductors such as the coil conductors 425 and/or 420 can be utilized to provide sufficient electrical performance in a low-profile design and also optimal mechanical characteristics such as axial stiffness relative to that of adjacent insulative components such as the lead body 200.


In various embodiments, the multi-layer coil conductor 415 and/or 420 can be tuned to control the effective spring constant (expressed in force per unit length) of the coil conductor 415 and/or 420 so as to reduce or eliminate the difference in axial stiffness between the conductor coil and the adjacent insulating elements (i.e., lead body 200 components). By controlling and optimizing the coil conductor spring constant/axial stiffness in this way, the overall axial strength of the polymeric lead body components can be maintained, for example, where the coil conductor 415, 420 terminates proximal to the lead body component. Additionally, by reducing or eliminating large differences in the axial stiffness of the conductors (i.e., by utilizing the multi-layer coil conductors 415 and/or 420) and the parallel polymeric lead body components, shear forces between these elements are advantageously reduced. Utilizing the multi-layer coil conductors 415, 420 in lieu of conductor cables also eliminates snaking of the conductor that can result due to the contraction and release of a tensile axial load on the conductor.


Exemplary design parameters that can be varied to tune/optimize the mechanical characteristics discussed above can include, without limitation, the selection of conductor materials, number of layers, wind geometry, pitch, filar diameter, number of filars, and others.


In addition to the coil conductor configurations described above, the various embodiments of the lead 150 of the present invention may optionally incorporate other features or techniques to minimize the effects of MRI radiation. For example, in some embodiments, shielding may be added to the lead 150 to further reduce the amount of electromagnetic energy picked up from the lead 150. For example, the energy picked up from the shielding can be coupled to the patient's body along the length of the lead 150, preventing the energy from coupling to the lead tip. The transfer of intercepted energy by the shielding along the length of the shielding/lead can also be inhibited by dissipating the energy as resistive loss, using resistive material for the shielding construction.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims
  • 1. An implantable electrical lead comprising: a lead body; anda coil conductor extending within the lead body, the coil conductor configured such that the coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the coil conductor.
  • 2. The implantable electrical lead of claim 1, wherein the coil conductor includes a filar having a filar thickness, a coil outside diameter, and a coil pitch, and wherein one or more of the filar thickness, the coil outside diameter, and the coil pitch are such that the axial stiffness of coil conductor is substantially equal to the axial stiffness of the lead body adjacent to the coil conductor.
  • 3. The implantable electrical lead of claim 1, wherein a filar material and a coil wind geometry of the coil conductor are such that the axial stiffness of the coil conductor is substantially equal to the axial stiffness of the lead body adjacent to the coil conductor.
  • 4. The implantable electrical lead of claim 1, wherein the coil conductor is mechanically and electrically connected to an electrode.
  • 5. The implantable electrical lead of claim 4, wherein the coil conductor is configured to allow the electrode to move axially relative to a proximal connector when under tensile load.
  • 6. The implantable electrical lead of claim 1, further comprising a layer of insulating material disposed over the coil conductor.
  • 7. The implantable electrical lead of claim 1, wherein each filar of the coil conductor is individually insulated.
  • 8. The implantable electrical lead of claim 1, wherein the coil conductor is formed from one or more filars of a silver core drawn filled tube (DFT) wire having an MP35N cladding.
  • 9. The implantable electrical lead of claim 1, wherein a pre-determined spring constant of the coil conductor is such that the lead returns to its original length after axial elongation of the coil conductor.
  • 10. An implantable electrical lead, comprising: a lead body having a longitudinal body lumen;an electrode coupled to the flexible body in the distal region; anda conductor extending within the longitudinal body lumen and coupled to the electrode, wherein at least one parameter of the coil conductor is configured such that the lead exhibits a predetermined axial stiffness or bending stiffness, wherein the at least one parameter of the coil conductor is at least one of a coil filar thickness, a number of filars, a filar material, a coil winding direction, or a coil diameter, and wherein the coil conductor is configured such that the coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the coil conductor.
  • 11. The implantable electrical lead of claim 10, wherein the coil conductor is formed from one or more filars of a silver core drawn filled tube (DFT) wire having an MP35N cladding.
  • 12. The implantable electrical lead of claim 10, wherein the coil conductor is mechanically and electrically connected to a second electrode coupled to the lead body.
  • 13. The implantable electrical lead of claim 12, wherein the coil conductor allows the second electrode to move axially relative to a proximal connector when under tensile load.
  • 14. The implantable electrical lead of claim 10, wherein each of the filars of the coil conductor is individually insulated.
  • 15. An implantable electrical lead, comprising: a lead body; anda coil conductor extending within the lead body, wherein at least one parameter of the coil conductor is configured such that the coil conductor has a pre-determined spring constant along at least a portion of its length, and wherein the coil conductor is configured such that the coil conductor has an axial stiffness substantially equal to an axial stiffness of the lead body adjacent to the coil conductor.
  • 16. The implantable electrical lead of claim 15, wherein the pre-determined spring constant is such that the lead returns to its original length after axial elongation of the coil conductor.
  • 17. The implantable electrical lead of claim 15, wherein the coil conductor is mechanically and electrically connected to an electrode coupled to the lead body.
  • 18. The implantable electrical lead of claim 15, wherein the coil conductor is configured to allow the electrode to move axially relative to a proximal connector when under tensile load.
  • 19. The implantable electrical lead of claim 15, further comprising a layer of insulating material disposed over the coil conductor.
  • 20. The implantable electrical lead of claim 15, wherein each filar of the coil conductor is individually insulated.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/767,445, filed Feb. 14, 2013, is now U.S. Pat. No. 8,676,351 which is a continuation of U.S. application Ser. No. 12/940,489, filed Nov. 5, 2010, is now U.S. Pat. No. 8,391,994 and claims the benefit of U.S. Provisional Application 61/291,556, filed Dec. 31, 2009, all of which are herein incorporated by reference in their entirety.

US Referenced Citations (357)
Number Name Date Kind
3614692 Rozelle et al. Oct 1971 A
4131759 Felkel Dec 1978 A
4135518 Dutcher Jan 1979 A
4146036 Benjamin et al. Mar 1979 A
4209019 Dutcher et al. Jun 1980 A
4253462 Dutcher et al. Mar 1981 A
4350169 Dutcher et al. Sep 1982 A
4381013 Dutcher Apr 1983 A
4404125 Abolins et al. Sep 1983 A
4437474 Peers-Trevarton Mar 1984 A
4484586 McMickle et al. Nov 1984 A
4493329 Crawford et al. Jan 1985 A
4574800 Peers-Trevarton Mar 1986 A
4643202 Roche Feb 1987 A
4649938 McArthur Mar 1987 A
4869970 Gulla et al. Sep 1989 A
5002067 Berthelsen et al. Mar 1991 A
5003975 Hafelfinger et al. Apr 1991 A
5020545 Soukup Jun 1991 A
5056516 Spehr Oct 1991 A
5074313 Dahl et al. Dec 1991 A
5144960 Mehra et al. Sep 1992 A
5201865 Kuehn Apr 1993 A
5217010 Tsitlik et al. Jun 1993 A
5222506 Patrick et al. Jun 1993 A
5231996 Bardy et al. Aug 1993 A
5241957 Camps et al. Sep 1993 A
5243911 Dow et al. Sep 1993 A
5246014 Williams et al. Sep 1993 A
5259395 Li Nov 1993 A
5300108 Rebell et al. Apr 1994 A
5324322 Grill, Jr. et al. Jun 1994 A
5330522 Kreyenhagen Jul 1994 A
5354327 Smits Oct 1994 A
5370666 Lindberg et al. Dec 1994 A
5378234 Hammerslag et al. Jan 1995 A
5387199 Siman et al. Feb 1995 A
5417208 Winkler May 1995 A
5425755 Doan Jun 1995 A
5456707 Giele Oct 1995 A
5476485 Weinberg et al. Dec 1995 A
5483022 Mar Jan 1996 A
5522872 Hoff Jun 1996 A
5522875 Gates et al. Jun 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5542173 Mar et al. Aug 1996 A
5545205 Schulte et al. Aug 1996 A
5549646 Katz et al. Aug 1996 A
5554139 Okajima Sep 1996 A
5574249 Lindsay Nov 1996 A
5584873 Shoberg et al. Dec 1996 A
5599576 Opolski Feb 1997 A
5609622 Soukup et al. Mar 1997 A
5618208 Crouse et al. Apr 1997 A
5727552 Ryan Mar 1998 A
5727553 Saad Mar 1998 A
5728149 Laske et al. Mar 1998 A
5755742 Schuelke et al. May 1998 A
5760341 Laske et al. Jun 1998 A
5766227 Nappholz et al. Jun 1998 A
5800496 Swoyer et al. Sep 1998 A
5810887 Accorti, Jr. et al. Sep 1998 A
5817136 Nappholz et al. Oct 1998 A
5824026 Diaz Oct 1998 A
5833715 Vachon et al. Nov 1998 A
5849031 Martinez et al. Dec 1998 A
5891114 Chien et al. Apr 1999 A
5891179 Er et al. Apr 1999 A
5935159 Cross, Jr. et al. Aug 1999 A
5957966 Schroeppel et al. Sep 1999 A
5957970 Shoberg et al. Sep 1999 A
5968087 Hess et al. Oct 1999 A
6016447 Juran et al. Jan 2000 A
6057031 Breme et al. May 2000 A
6078840 Stokes Jun 2000 A
6083216 Fischer, Sr. Jul 2000 A
6101417 Vogel et al. Aug 2000 A
6106522 Fleischman et al. Aug 2000 A
6141593 Patag Oct 2000 A
6143013 Samson et al. Nov 2000 A
6178355 Williams et al. Jan 2001 B1
6192280 Sommer et al. Feb 2001 B1
6208881 Champeau Mar 2001 B1
6249708 Nelson et al. Jun 2001 B1
6256541 Heil et al. Jul 2001 B1
6259954 Conger et al. Jul 2001 B1
6289250 Tsuboi et al. Sep 2001 B1
6295476 Schaenzer Sep 2001 B1
6304784 Allee et al. Oct 2001 B1
6317633 Jorgenson et al. Nov 2001 B1
6360129 Ley et al. Mar 2002 B1
6400992 Borgersen et al. Jun 2002 B1
6428537 Swanson et al. Aug 2002 B1
6434430 Borgersen et al. Aug 2002 B2
6456888 Skinner et al. Sep 2002 B1
6493591 Stokes Dec 2002 B1
6501991 Honeck et al. Dec 2002 B1
6501994 Janke et al. Dec 2002 B1
6510345 Van Bentem Jan 2003 B1
6516230 Williams et al. Feb 2003 B2
6526321 Spehr Feb 2003 B1
6564107 Bodner et al. May 2003 B1
6671554 Gibson et al. Dec 2003 B2
6701191 Schell Mar 2004 B2
6721600 Jorgenson et al. Apr 2004 B2
6721604 Robinson et al. Apr 2004 B1
6813521 Bischoff et al. Nov 2004 B2
6850803 Jimenez et al. Feb 2005 B1
6854994 Stein et al. Feb 2005 B2
6866044 Bardy et al. Mar 2005 B2
6906256 Wang Jun 2005 B1
6920361 Williams Jul 2005 B2
6925334 Salys Aug 2005 B1
6944489 Zeijlemaker et al. Sep 2005 B2
6949929 Gray et al. Sep 2005 B2
6978185 Osypka Dec 2005 B2
6985755 Cadieux et al. Jan 2006 B2
6985775 Reinke et al. Jan 2006 B2
6993373 Vrijheid et al. Jan 2006 B2
6999818 Stevenson et al. Feb 2006 B2
6999821 Jenney et al. Feb 2006 B2
7013180 Dublin et al. Mar 2006 B2
7013182 Krishnan Mar 2006 B1
7047075 Stubbs May 2006 B2
7047083 Gunderson et al. May 2006 B2
7050855 Zeijlemaker et al. May 2006 B2
7113827 Silvestri et al. Sep 2006 B2
7123013 Gray Oct 2006 B2
7127294 Wang et al. Oct 2006 B1
7135978 Gisselberg et al. Nov 2006 B2
7138582 Lessar et al. Nov 2006 B2
7158837 Osypka et al. Jan 2007 B2
7174219 Wahlstrand et al. Feb 2007 B2
7174220 Chitre et al. Feb 2007 B1
7205768 Schulz et al. Apr 2007 B2
7239916 Thompson et al. Jul 2007 B2
7242987 Holleman et al. Jul 2007 B2
7257449 Bodner Aug 2007 B2
7289851 Gunderson et al. Oct 2007 B2
7363090 Halperin et al. Apr 2008 B2
7369898 Kroll et al. May 2008 B1
7378931 Odahara et al. May 2008 B2
7388378 Gray et al. Jun 2008 B2
7389148 Morgan Jun 2008 B1
7453344 Maeda et al. Nov 2008 B2
7535363 Gisselberg et al. May 2009 B2
7571010 Zarembo et al. Aug 2009 B2
7610101 Wedan et al. Oct 2009 B2
7630761 Salo et al. Dec 2009 B2
7689291 Polkinghorne et al. Mar 2010 B2
7765005 Stevenson Jul 2010 B2
7853332 Olsen et al. Dec 2010 B2
7877150 Hoegh et al. Jan 2011 B2
7912552 Przybyszewski Mar 2011 B2
7917213 Bulkes et al. Mar 2011 B2
7933662 Marshall et al. Apr 2011 B2
7953499 Knapp et al. May 2011 B2
7986999 Wedan et al. Jul 2011 B2
7991484 Sengupta et al. Aug 2011 B1
8000801 Stevenson et al. Aug 2011 B2
8027736 Wahlstrand et al. Sep 2011 B2
8032230 Cox et al. Oct 2011 B1
8046084 Bodner Oct 2011 B2
8099177 Dahlberg Jan 2012 B2
8103360 Foster Jan 2012 B2
8108054 Helland Jan 2012 B2
8145324 Stevenson et al. Mar 2012 B1
8170688 Wedan et al. May 2012 B2
8200342 Stevenson et al. Jun 2012 B2
8214055 Erickson Jul 2012 B2
8244346 Foster et al. Aug 2012 B2
8255055 Ameri Aug 2012 B2
8306630 Stubbs et al. Nov 2012 B2
8315715 Erickson Nov 2012 B2
8332050 Perrey et al. Dec 2012 B2
8335572 Ameri Dec 2012 B2
8391994 Foster et al. Mar 2013 B2
8401671 Wedan et al. Mar 2013 B2
8543209 Tyers et al. Sep 2013 B2
8543218 Erickson Sep 2013 B2
8666508 Foster et al. Mar 2014 B2
8666512 Walker et al. Mar 2014 B2
8670828 Hall et al. Mar 2014 B2
8670840 Wedan et al. Mar 2014 B2
8676344 Desai et al. Mar 2014 B2
8676351 Foster et al. Mar 2014 B2
8682451 Wengreen et al. Mar 2014 B2
8688236 Foster Apr 2014 B2
8731685 Ameri May 2014 B2
8744600 Perrey et al. Jun 2014 B2
8798767 Foster et al. Aug 2014 B2
8825179 Walker et al. Sep 2014 B2
8825181 Foster et al. Sep 2014 B2
20020065544 Smits May 2002 A1
20020072769 Silvian et al. Jun 2002 A1
20020111664 Bartig et al. Aug 2002 A1
20020128689 Connelly et al. Sep 2002 A1
20020144720 Zahorik et al. Oct 2002 A1
20030028231 Partridge et al. Feb 2003 A1
20030050680 Gibson et al. Mar 2003 A1
20030083723 Wilkinson et al. May 2003 A1
20030083726 Zeijlemaker et al. May 2003 A1
20030092303 Osypka May 2003 A1
20030093136 Osypka et al. May 2003 A1
20030093138 Osypka et al. May 2003 A1
20030139794 Jenney et al. Jul 2003 A1
20030140931 Zeijlemaker et al. Jul 2003 A1
20030144705 Funke Jul 2003 A1
20030144716 Reinke et al. Jul 2003 A1
20030144718 Zeijlemaker Jul 2003 A1
20030144719 Zeijlemaker Jul 2003 A1
20030144720 Villaseca et al. Jul 2003 A1
20030144721 Villaseca et al. Jul 2003 A1
20030204217 Greatbatch Oct 2003 A1
20040014355 Osypka et al. Jan 2004 A1
20040064161 Gunderson et al. Apr 2004 A1
20040064173 Hine et al. Apr 2004 A1
20040064174 Belden Apr 2004 A1
20040088033 Smits et al. May 2004 A1
20040097965 Gardeski et al. May 2004 A1
20040122490 Reinke et al. Jun 2004 A1
20040153049 Hewitt et al. Aug 2004 A1
20040162600 Williams Aug 2004 A1
20040167442 Shireman et al. Aug 2004 A1
20040172117 Hill et al. Sep 2004 A1
20040193140 Griffin et al. Sep 2004 A1
20040243210 Morgan et al. Dec 2004 A1
20040267107 Lessar et al. Dec 2004 A1
20050070972 Wahlstrand et al. Mar 2005 A1
20050090886 MacDonald et al. Apr 2005 A1
20050113676 Weiner et al. May 2005 A1
20050113873 Weiner et al. May 2005 A1
20050113876 Weiner et al. May 2005 A1
20050136385 Mann et al. Jun 2005 A1
20050177135 Hildebrand et al. Aug 2005 A1
20050182471 Wang Aug 2005 A1
20050197677 Stevenson Sep 2005 A1
20050222642 Przybyszewski et al. Oct 2005 A1
20050222656 Wahlstrand et al. Oct 2005 A1
20050222657 Wahlstrand et al. Oct 2005 A1
20050222658 Hoegh et al. Oct 2005 A1
20050222659 Olsen et al. Oct 2005 A1
20050246007 Sommer et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050272280 Osypka Dec 2005 A1
20050283167 Gray Dec 2005 A1
20060009819 Przybyszewski Jan 2006 A1
20060030774 Gray et al. Feb 2006 A1
20060037461 Yasumura Feb 2006 A1
20060041293 Mehdizadeh et al. Feb 2006 A1
20060041294 Gray Feb 2006 A1
20060041296 Bauer et al. Feb 2006 A1
20060089691 Kaplan et al. Apr 2006 A1
20060089695 Bolea et al. Apr 2006 A1
20060089696 Olsen et al. Apr 2006 A1
20060106442 Richardson et al. May 2006 A1
20060118758 Wang et al. Jun 2006 A1
20060129043 Ben-Jacob et al. Jun 2006 A1
20060167536 Nygren et al. Jul 2006 A1
20060200218 Wahlstrand Sep 2006 A1
20060229693 Bauer et al. Oct 2006 A1
20060247747 Olsen et al. Nov 2006 A1
20060247748 Wahlstrand et al. Nov 2006 A1
20060252314 Atalar et al. Nov 2006 A1
20060253180 Zarembo et al. Nov 2006 A1
20060271138 MacDonald Nov 2006 A1
20060293737 Krishnan Dec 2006 A1
20070010702 Wang et al. Jan 2007 A1
20070027532 Wang et al. Feb 2007 A1
20070106332 Denker et al. May 2007 A1
20070112398 Stevenson et al. May 2007 A1
20070156205 Larson et al. Jul 2007 A1
20070179577 Marshall et al. Aug 2007 A1
20070179582 Marshall et al. Aug 2007 A1
20070191914 Stessman Aug 2007 A1
20070208383 Williams Sep 2007 A1
20070255378 Polkinghorne et al. Nov 2007 A1
20080009905 Zeijlemaker Jan 2008 A1
20080033497 Bulkes et al. Feb 2008 A1
20080039709 Karmarkar Feb 2008 A1
20080049376 Stevenson et al. Feb 2008 A1
20080051854 Bulkes et al. Feb 2008 A1
20080057784 Zarembo et al. Mar 2008 A1
20080058902 Gray et al. Mar 2008 A1
20080119917 Geistert May 2008 A1
20080125754 Beer et al. May 2008 A1
20080129435 Gray Jun 2008 A1
20080132985 Wedan et al. Jun 2008 A1
20080132986 Gray et al. Jun 2008 A1
20080140152 Imran et al. Jun 2008 A1
20080154348 Atalar et al. Jun 2008 A1
20080208290 Phillips et al. Aug 2008 A1
20080243218 Bottomley et al. Oct 2008 A1
20080262584 Bottomley et al. Oct 2008 A1
20080269831 Erickson Oct 2008 A1
20090005825 MacDonald Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090024197 Jensen Jan 2009 A1
20090099440 Viohl Apr 2009 A1
20090099555 Viohl et al. Apr 2009 A1
20090118610 Karmarkar et al. May 2009 A1
20090149920 Li et al. Jun 2009 A1
20090149933 Ameri Jun 2009 A1
20090149934 Ameri et al. Jun 2009 A1
20090198314 Foster et al. Aug 2009 A1
20090204171 Ameri Aug 2009 A1
20090210022 Powers Aug 2009 A1
20090270948 Nghiem et al. Oct 2009 A1
20090270956 Vase et al. Oct 2009 A1
20090281608 Foster Nov 2009 A1
20100010602 Wedan et al. Jan 2010 A1
20100016935 Strandberg et al. Jan 2010 A1
20100103215 Iriguchi Apr 2010 A1
20100106215 Stubbs et al. Apr 2010 A1
20100114277 Zhao et al. May 2010 A1
20100125320 Polkinghorne et al. May 2010 A1
20100137928 Duncan et al. Jun 2010 A1
20100174348 Bulkes et al. Jul 2010 A1
20100174349 Stevenson et al. Jul 2010 A1
20100234929 Scheuermann Sep 2010 A1
20100249892 Bulkes et al. Sep 2010 A1
20100292744 Hill et al. Nov 2010 A1
20100331936 Perrey et al. Dec 2010 A1
20110060394 Poore Mar 2011 A1
20110079423 Zhao et al. Apr 2011 A1
20110087299 Ameri Apr 2011 A1
20110087302 Ameri Apr 2011 A1
20110093054 Ameri Apr 2011 A1
20110160805 Erbstoeszer et al. Jun 2011 A1
20110160816 Stubbs et al. Jun 2011 A1
20110160817 Foster et al. Jun 2011 A1
20110160818 Struve Jun 2011 A1
20110160828 Foster et al. Jun 2011 A1
20110160829 Foster et al. Jun 2011 A1
20110208280 Li et al. Aug 2011 A1
20110218422 Atalar et al. Sep 2011 A1
20110238146 Wedan et al. Sep 2011 A1
20110288403 Kondabatni et al. Nov 2011 A1
20120016451 Struve et al. Jan 2012 A1
20120022356 Olsen et al. Jan 2012 A1
20120035698 Johnson et al. Feb 2012 A1
20120053662 Foster et al. Mar 2012 A1
20120109270 Foster May 2012 A1
20120143273 Stubbs et al. Jun 2012 A1
20120161901 Stevenson et al. Jun 2012 A1
20120179233 Wedan et al. Jul 2012 A1
20120253340 Stevenson et al. Oct 2012 A1
20120271394 Foster et al. Oct 2012 A1
20130116764 Walker et al. May 2013 A1
20130158641 Foster et al. Jun 2013 A1
20130190849 Perrey et al. Jul 2013 A1
20130190850 Wedan et al. Jul 2013 A1
20130282093 Walker et al. Oct 2013 A1
20130325093 Foster Dec 2013 A1
20140067030 Walker et al. Mar 2014 A1
20140114383 Foster et al. Apr 2014 A1
20140324139 Foster et al. Oct 2014 A1
Foreign Referenced Citations (24)
Number Date Country
1762510 Apr 2006 CN
1905789 Jan 2007 CN
101039619 Sep 2007 CN
0897997 Feb 2003 EP
1594564 Nov 2005 EP
1852810 Nov 2007 EP
2004141679 May 2004 JP
2005501673 Jan 2005 JP
2005515852 Jun 2005 JP
2005515854 Jun 2005 JP
WO9606655 Mar 1996 WO
WO03063946 Aug 2003 WO
WO03063953 Aug 2003 WO
WO03089045 Oct 2003 WO
WO2004073791 Sep 2004 WO
WO2005030322 Apr 2005 WO
WO2006105066 Mar 2006 WO
WO2006093685 Sep 2006 WO
WO2007047966 Apr 2007 WO
WO2007089986 Aug 2007 WO
WO2007118194 Oct 2007 WO
WO2008051122 May 2008 WO
WO2009137186 Nov 2009 WO
WO2010078552 Jul 2010 WO
Non-Patent Literature Citations (29)
Entry
Third Party Submission Under 37 CFR 1.290 filed in U.S. Appl. No. 14/056,746 on May 20, 2014, 13 pages.
“High Voltage Engineering and Testing, 2nd Edition”, edited by Hugh M. Ryan, Institution of Engineering and Technology, 2001, 15 pages.
Avalanche Breakdown, Wikipedia Article, captured Apr. 6, 2010, [http://en.wikipedia.org/wiki/Avalanche—breakdown].
Basso, Christophe, “SPICE Model Simulates Spark-Gap Arrestor”, Electronics Design, Strategy, and News (EDN), Jul. 3, 1997, 4 pages.
Citel Inc., Data Sheet, BH Series 2 Electrode Miniature Gas Discharge Tube Surge Arrester—8mm, May 14, 2009, 2 pages.
File History for U.S. Appl. No. 11/015,807, filed Dec. 17, 2004.
Gray, Robert W. et al., “Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads”, Magnetic Resonance Imaging 23 (2005) 887-891.
Hayes, David L., Chapter 4, “Generator and Lead Selection” from book entitled “Cardiac Pacing and Defibrillation A Clinical Approach”, John Wiley & Sons, (c) 2000 Mayo Foundation, p. 129-157.
International Search Report and Written Opinion issued in PCT/US2008/085518 on Oct. 29, 2009, 15 pages.
International Search Report and Written Opinion issued in PCT/US2009/032838, mailed May 4, 2009, 14 pages.
International Search Report and Written Opinion issued in PCT/US2009/038629, mailed Jun. 29, 2009, 11 pages.
International Search Report and Written Opinion issued in PCT/US2009/056843, mailed Dec. 29, 2009, 13 pages.
International Search Report and Written Opinion issued in PCT/US2010/024062, mailed Sep. 27, 2010.
International Search Report and Written Opinion issued in PCT/US2010/033686 on Aug. 10, 2010, 12 pages.
International Search Report and Written Opinion issued in PCT/US2010/048620, mailed Apr. 5, 2011, 10 pages.
International Search Report and Written Opinion issued in PCT/US2010/053223, mailed Dec. 27, 2010, 11 pages.
International Search Report and Written Opinion issued in PCT/US2010/055130, mailed Mar. 10, 2011, 11 pages.
International Search Report and Written Opinion issued in PCT/US2010/055653, mailed Feb. 1, 2011, 14 pages.
International Search Report and Written Opinion issued in PCT/US2011/052541, dated Mar. 9, 2012, 22 pages.
International Search Report and Written Opinion issued in PCT/US2012/055673, mailed Dec. 13, 2012, 10 pages.
International Search Report and Written Opinion issued in PCT/US2013/037432, mailed Nov. 19, 2013, 17 pages.
International Search Report and Written Opinion issued in PCT/US2013/057732, mailed Dec. 13, 2013, 11 pages.
Invitation to Pay Additional Fees and Partial Search Report, dated Aug. 17, 2009, issued in PCT/US2008/085533, 6 pages.
Invitation to Pay Additional Fees and Partial Search Report, issued in PCT/US2010/024062, mailed May 7, 2010.
Partial International Search Report issued in PCT/US2011/052541, mailed Dec. 6, 2011, 4 pages.
Partial International Search Report issued in PCT/US2013/013432, mailed Jul. 17, 2013, 6 pages.
Partial International Search Report issued in PCT/US2013/037432, mailed Jul. 17, 2013, 6 pages.
Static Spark Gap Analysis, captured Dec. 24, 2002, [http;//www.richieburnett.co.uk/static.html].
International Search Report and Written Opinion issued in PCT/US2013/065517, mailed Dec. 20, 2013, 11 pgs.
Related Publications (1)
Number Date Country
20140155972 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61291556 Dec 2009 US
Continuations (2)
Number Date Country
Parent 13767445 Feb 2013 US
Child 14174358 US
Parent 12940489 Nov 2010 US
Child 13767445 US