This disclosure relates to medical devices used in MRI visualization.
Interventional medical devices such as guide wires, catheters, electrode needles and biopsy needles are used for a variety of different treatments, for example delivery of a stent within a patient. Tracking of catheters and other devices positioned within a body can be achieved by means of an imaging systems such as x-ray angiography or magnetic resonance imaging (MRI). X-ray angiography systems have difficulty distinguishing between various tissues within a patient. MRI systems have the ability to distinguish between different types of tissues and thus provide benefits over an x-ray system. However, real-time tracking using MRI is susceptible to noise and orientation of devices are difficult to determine. Typically, such a magnetic resonance imaging system may include a magnet, a pulsed magnetic field gradient generator, a transmitter for transmitting electromagnetic waves in radio frequency (RF), a radio frequency receiver, and a controller.
In a common tracking implementation, an antenna is disposed either on the device to be tracked or on a guidewire or catheter (commonly referred to as an MR catheter) used to assist in the delivery of the device to its destination. In one known implementation, the antenna comprises an electrically conductive coil that is coupled to a pair of elongated electrical conductors that are electrically insulated from each other and that together comprise a transmission line adapted to transmit the detected signal to the RF receiver.
In one embodiment, the coil is arranged in a solenoid configuration. The patient is placed into or proximate the magnet and the device is inserted into the patient. The magnetic resonance imaging system generates electromagnetic waves in radio frequency and magnetic field gradient pulses that are transmitted into the patient and that induce a resonant response signal from selected nuclear spins within the patient. This response signal induces current in the coil of electrically conductive wire attached to the device. The coil thus detects the nuclear spins in the vicinity of the coil. The transmission line transmits the detected response signal to the radio frequency receiver, which processes it and then stores it with the controller. This process is repeated in three orthogonal directions. The gradients cause the frequency of the detected signal to be directly proportional to the position of the radio-frequency coil along each applied gradient. Other reconstruction techniques are known, including two dimensional, radial and spiral methods.
The position of the radio frequency coil inside the patient may therefore be calculated by processing the data using Fourier transformations so that a positional picture of the coil is achieved. In one implementation this positional picture is superposed with a background magnetic resonance image of the region of interest. The positional picture can be displayed in a different color from the background image. The background image of the region can be taken and stored at the same time as the positional picture or at any earlier time. Although the position of the coil can be determined, real time tracking and visualizing of the coil is still susceptible to noise.
In one aspect, a method of imaging a device in a magnetic resonance imaging system includes inserting a device having a conductive coil assembly thereon into a subject, obtaining a magnetic resonance image of the subject that includes signal phase variations, determining a position of the device based on discontinuities in the signal phase variations, and displaying an image representation of the device superimposed on a reference image based upon the determined position.
In another aspect, a method of imaging an elongate device in a magnetic resonance imaging system includes placing an elongate conductive coil assembly along a length of the device. A magnetic resonance image is obtained containing signal phase variations. An image representation of the length of the device is generated based upon the signal phase variations.
In another aspect, a magnetic resonance imaging system includes a radio frequency (RF) source, an elongate conductive coil positioned to receive RF signals from the RF source, an RF receiver positioned to receive RF signals from the RF source, and a controller operably coupled to the conductive coil and the RF receiver and adapted to generate an image representation of a length of a coil based on signal phase variations received by at least one of the elongate coil and the RF receiver.
In another aspect, a magnetic resonance imaging system includes means for obtaining a magnetic resonance image containing signal phase variations, and means for generating an image representation of a length of an elongate conductive coil based on the signal phase variations.
In another aspect, an invasive medical device includes an elongated body having a conductive coil assembly thereon, and a plurality of regions formed of materials with different magnetic susceptibility.
Implementations of any of the above aspects can include one or more of the following features. Determining the position of the device can include detection of the discontinuities in the signal phase variations by a processor, and determining the position of the device can include pattern recognition of the magnetic resonance image by a processor. Signal phase variations may be detected using the conductive coil assembly, or using an external coil of the magnetic resonance imaging system. The magnetic resonance image may include a magnitude signal and the generating step may include applying a mask generated from the magnitude signal to the image representation. The device can be elongate, and the coil can be elongate. The elongate conductive coil assembly may be a double helix coil, a single helical loop coil with center return, a twisted twin lead coil, a coil having a convoluted path, or coil having alternative opposed solenoid coils. Signal phase variations in the magnetic resonance image may be unwrapped. Shear may be distinguished from phase wrap using a temporal filter or by varying phase shifting. An RF excitation signal may be applied through the coil assembly. The magnetic resonance image may be obtained using the coil assembly. The susceptibility of the coil assembly may be used to cause a local phase shift. Additional phase and coding pulses, such as dephasing pulses, may be transmitted through the coil assembly. A location of the coil assembly may be identified using phase residues. Phased noise may be reduced using a mask generated from signal magnitude. Generating an image may include using phase derivative variants to detect shear. Generating an image may include calculating maximum phase gradient from locally unwrapped phase data. The coil assembly may have a variable sensitivity pattern along a length of the coil assembly. The plurality of regions of different magnetic susceptibility can form a pattern, e.g., alternating bands of different magnetic susceptibility. The device can be a guide wire, catheter, electrode needle or biopsy needle.
In another aspect, a computer program product, i.e., a computer program tangibly embodied in a machine readable storage media, can cause a processor to carry out the computational aspects of the methods described above.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
RF source 140 radiates pulsed radio frequency energy into subject 100 and the MR active material within device 150 at predetermined times and with sufficient power at a predetermined frequency to nutate nuclear magnetic spins in a fashion well known to those skilled in the art. The nutation of the spins causes them to resonate at the Larmor frequency. The Larmor frequency for each spin is directly proportional to the strength of the magnetic field experienced by the spin. This field strength is the sum of the static magnetic field generated by magnetic field generator 120 and the local field generated by magnetic field gradient generator 130. In an illustrative embodiment, RF source 140 can comprise a cylindrical external coil that surrounds the region of interest of subject 100. Such an external coil can have a diameter sufficient to encompass the entire subject 100. Other geometries, such as smaller cylinders specifically designed for imaging the head or an extremity can be used instead. Non-cylindrical external coils such as surface coils may alternatively be used.
Device 150 is inserted into subject 100 by an operator. Device 150 may be a guide wire, a catheter, a filter, an ablation device or a similar recanalization or other device. The device 150 can include a magnetic resonance (MR) active material. Device 150 can also include a device antenna, e.g., a coil assembly, discussed below that can be used to detect MR signals generated in both the subject and the device 150 itself in response to the radio frequency field created by RF source 140. Signals detected by the device coil assembly are sent to imaging and tracking controller unit 170 via conductor 180.
In one embodiment, device 150 includes an elongate conductive coil to track and visualize the location and orientation of device 150. Many different coil structures can be used such as a double helix loop coil, single helical loop coil with center return, twisted twin lead coil, a coil having a convoluted path and alternatively opposed solenoid coils in series. It can be beneficial for the sensitivity and phase pattern of the coil for the coil assembly to have a unique or distinctive appearance, e.g., for the coil assembly to include groups of coils that are spaced-apart with regular spacing.
External RF receiver 160 detects RF signals in response to the radio frequency field created by RF source 140. In an illustrative embodiment, external RF receiver 160 is a cylindrical external coil that surrounds the region of interest of subject 100. Such an external coil can have a diameter sufficient to encompass the entire subject 100. Other geometries, such as small cylinders specifically designed for imaging the head or an extremity can be used instead. Non-cylindrical external coils, such as surface coils, may alternatively be used.
External RF receiver 160 can share some or all of its structure with RF source 140 or can have a structure entirely independent of RF source 140. The region of sensitivity of RF receiver 160 is larger than that of the device antenna and can encompass the entire subject 100 or a specific region of subject 100. However, the resolution that can be obtained from external RF receiver 160 is less than that which can be achieved with the device antenna. Likewise, the signal to noise ratio can often be improved using a device antenna. The RF signals detected by external RF receiver 160 are sent to imaging and tracking controller unit 170 where they are analyzed together with RF signals detected by the device antenna. In accordance with some embodiments, phase information detected by the device antenna and/or RF receiver 160 is used for determining the position and orientation of device 150.
The position and orientation of device 150 is determined in imaging and tracking controller unit 170 and is displayed on visual display 190, e.g., a computer screen. The controller unit 170 can detect artifacts, e.g., discontinuities, in the phase variation, and determines the position and orientation based on the detected discontinuities. In particular, an image representation of device 150 can be superimposed on a reference image, with the position of the image representation in the reference image based upon the determined position. The image representation can be a portion of a phase image, e.g., a phase variation image that is masked to show substantially only the device, or a graphical symbol. For example, controller unit 170 can derive a phase image of the subject from information detected by the device antenna and/or RF receiver 160, and display the phase image on visual display 190. The reference image can be a simultaneously obtained conventional background MR image, e.g., a magnitude image, obtained by external RF receiver 160, or a stored image.
In an illustrative embodiment, the position of device 150 is displayed on visual display 190 by superposition of a graphic symbol on a conventional background MR image obtained by external RF receiver 160. The position can be displayed in a different color from the background image. Alternatively, background images can be acquired with external RF receiver 160 prior to initiating tracking and a symbol representing the location of the tracked device can be superimposed on the previously acquired image. Alternative embodiments display the position of the device numerically or as a graphic symbol without reference to a diagnostic image.
When performing MRI, tuning the resonant frequency of the implanted device antenna (e.g., coil) to the Larmor frequency of the surrounding protons enhances their MR visibility. Using a receiver coil outside the body, as illustrated with respect to coil 160 in
As shown in
At step 204, a magnetic resonance image is obtained of the device. Signals detected by external coil 160 and/or the coil 192 placed along device 150 can be used for obtaining the image. In some embodiments, phase information from these signals are used in generating an MR image.
RF energy from RF source 140 causes currents to flow in the coil along the length of the device. The current in the coil creates an associated magnetic field. Local magnetic field variations can result either from low frequency (DC) current, or from variation magnetic permeability with a resulting variation in material susceptibility, which are distinct phenomena but behave similarly. Magnetic susceptibility of portions of the conductive coil along the device cause a local phase shift (e.g., phase discontinuities, also known as shear) of magnetic resonance images taken along a length of the conductive coil due to these currents and the associated magnetic field. Generally, the phase shift is continuous away from the coil. At the coil, the magnetic field, and therefore the phase shift, can be a discontinuity in some cases.
In some instances, phase discontinuities can be difficult to detect due to orientation of the coil and/or orientation of the RF signal generated by the MRI system. Several techniques can be employed to identify one or more discrete locations on the coil in order to visualize the device along the coil in MR images. Phase discontinuities can also be difficult to determine due to phase ambiguities in which phases in comparative signals differ by a value of 2π. These phase ambiguities are said to be “wrapped”, and can be resolved using known “phase unwrapping” techniques.
Given the above situations, one technique that can be used according to step 204 is to obtain images along a thick imaging area (or slice) corresponding to several adjacent parallel planes. As a result of using the thick slice, phase discontinuities are more likely to be detected with respect to at least some of the planes within the imaging slice. Additionally, by periodically spacing coils of small width with respect to resolution of the image along the device, locations of the individual coils can easily be determined.
In another technique, varying phase shifting of images and temporal filtering are used to distinguish shear from phase wrap in complex phase images. For example, a separate encoding pulse can be used to cause a phase shift. In a further technique, an RF excitation can be transmitted through the device to create fringes, which are changes in magnitude of signal. This can result from cycling of the flip angle, as the excitation pulse decays with distance from the antenna. An optimum flip angle to create a maximum signal that locates positions in the coil can be determined by detecting phase using an external coil and/or the coil along the device. Alternatively, dephasing pulses can be transmitted through coils to drive a phase signal to zero, which causes residues in the phase image. As the phase signal changes from a positive value to a negative value, alternating residues can be detected and used to generate an image of the device.
In another embodiment, alternating coils can be used to generate alternating residues.
In another embodiment, a phase derivative variance and/or maximum phase gradient quality maps can be used to detect shear. Additionally, a maximum gradient from locally unwrapped phase data can be calculated to eliminate extraneous phase wrap artifact.
At step 206, an image representation is generated at the length of the device based upon signal phase variations in the obtained MR image. The phase variations indicate device position and orientation due to the discontinuities caused and/or detected by the coil along the device. In one embodiment, a mask generated from a magnitude interpretation of MRI information can be used with the phase variations to exclude unwanted phase noise. The resulting image representation can be used in a real-time setting to aid in visualizing and tracking interventional devices in an MRI process.
In the example of
In the example of
Embodiments disclosed herein permit visualization of lengths or other configurations of elongate medical devices such as catheters and guide wires. Thus, the path of the elongate medical device through the subject can be visualized. This is in contrast to other techniques in which imaging is used for tracking through the calculation of one or more discreet locations on a device such as a catheter, often corresponding to small individual coils, with respect to an image. As used herein, visualization refers to the creation of a local image combined with another, larger image in such a way as to indicate the location of a device. In the case where a number of small coils are placed along a length of the device, the image of the device begins to blur. In one aspect, pattern matching techniques are used to identify characteristic catheter phase effects for use in visualization.
Through the visualization techniques disclosed, phase information which is detected by, or caused by, the coil assembly is used to define the location and orientation of an invasive medical device such as a guide wire, catheter, electrode, biopsy needle, etc. The phase discontinuity, i.e., shear, resulting from device detection or stimulation is used to track and/or visualize the medical device. Specific coil designs can be used to provide robust phase information in many imaging and device orientations. Such designs include a double helix loop coil, single helical loop coil with center return, twisted twin lead coil, alternating opposed solenoid cols connected in series, or other configurations.
As discussed earlier, catheters with alternating coil patterns along their length have been found to be less sensitive to device orientation. Varying phase shifting of images and temporal filtering can be used to distinguish shear from phase wrap in complex phase images. Catheters with periodic coil spacing can be detected by applying a spatiotemporal filter to the image. In another configuration, an RF excitation signal is transmitted through the coil assembly to create fringes by cycling the flip angle. These fringes are detected either through the coil assembly or through the external imaging coil. Most imaging schemes have an optimal flip angle that wields maximum signal. For spin echo sequences, that angle is 90°. At 180°, the signal is 0 and at 270° the signal is again a maximum.
In another configuration, the susceptibility of the coil assembly is used to cause a local phase shift. Additional phase and coding pulses can be transmitted through the coil assembly to cause a phase shift. Dephasing pulses can be transmitted through a finely textured coil to drive the signal to zero locally, thereby residues in the phase image. These residues can be used to provide an indication of catheter position. Alternating coils can be used to generate alternating residues which can also provide an indication of catheter position.
The imaging processing can be selected as desired. For example, a mask can be applied which is generated from signal magnitude to exclude unwanted phase noise in the final image. Phase derivative variants or maximum phase gradient quality maps can be used to detect shear, for example as described in “Two Dimensional Phase Unwrapping Theory, Algorithms and Software” by Dennis C. Ghiglia and Mark D. Pritt, published by John Wiley and Sons, 1998. A maximum gradient can be calculated from locally unwrapped phase data to eliminate extraneous phase wrap artifacts.
In general, the coil assembly and imaging plane orientation can be configured to provide well defined phase discontinuities that are more easily detected. However, since invivo catheter orientation must be assumed to be arbitrary, coils with variable sensitivity patterns along the length of the catheter are preferable. If the texture of the coils is sufficiently fine, positioning errors along the length of the catheter may be acceptable in exchange for increased precision of visualization information perpendicular to the catheter, as illustrated in
In general, implementations of the device, e.g., the medical device, can include an image acquisition technique, one or more sources of phase discontinuities, and one or more phase discontinuity detection techniques.
Image Acquisition
In some implementations, an MRI phase image is reconstructed using standard MRI techniques from the signals detected by the device antenna 192. The phase image from the device antenna can be superimposed on a background image generated, either previously or simultaneously, from coils external to the subject that provide a more uniform sensing of a larger region of interest. The background image can be magnitude image, although it can include phase information, e.g., for indicating velocity. The similar structures visible from the phase and background images can be used to aligned the images. The image from the device antenna will exhibit a discontinuity (caused by one of the effects discussed below), indicating the location of the device, thus enabling precise determination and representation of the device on the combined image.
In other alternative implementations, an MRI phase image is reconstructed using standard MRI techniques from the signals detected by the external RF receiver 160. The image from the external antenna will exhibit a discontinuity (caused by one of the effects discussed below), indicating the location of the device.
Source of Phase Discontinuities
In some implementations, the device 150 is formed of a material with a different magnetic susceptibility than the media in which it will be positioned, e.g., blood or tissue. Thus, the boundary between the device and the blood or tissue should be visible as a phase discontinuity on a phase image.
In some implementations, the device 150 includes adjacent regions formed of materials with different magnetic susceptibility. For example, the regions of the device can form a pattern, e.g., alternating bands of different magnetic susceptibility. The boundaries between these adjacent regions should be visible as a phase discontinuities on a phase image.
In some implementations, a DC or low frequency pulse is transmitted through the coil assembly on the device 150. This DC or low frequency pulse generates a magnetic field around the wire, thus cause local phase shifts in the materials adjacent the device. The direction and magnitude of the phase shift will depend on the orientation of the wire relative to the applied magnetic fields. However, in general, where the slice is parallel to the B0 field, the applied field and resulting phase shifts in the slice on opposite sides of the wire will be in opposite directions. In contrast, in general, where the slice is perpendicular to the B0 field, phase shifts will tend to cancel each other through the thickness of the slice. In this case, several compensating techniques can be used. First, a dephasing pulse can be applied to eliminate the cancellation. Second, multiple adjacent slices can be examined to detect the phase (phases will not cancel each other in slices immediately adjacent to the wire, thus sudden shift in phase in adjacent slices can generate a detectable discontinuity).
In some implementations, the device antenna is a coil assembly with varying coil configuration or density along the length of the device. For example, the coil assembly can include periodically spaced groups of coils connected by generally linear conductive segments. The variations in the coil assembly along the length of the device can generate variations in phase along the length of the device, such as phase discontinuities around each group of coils, which can be helpful in determining device position and orientation.
Detection of Phase Discontinuities
In some implementations, the image (i.e., the image analyzed to detect the phase discontinuity) is based on the phase data. In some implementations, the image is based on a first derivative of the phase data. In some implementations, the image is based on a second derivative of the phase data. In some implementations, phase discontinuities are detected from phase derivative variance. In some implementations, phase discontinuities are detected from maximum phase gradient. In some implementations, phase discontinuities are detected from quality maps can be used to detect shear. Additionally, phase data is locally unwrapped to eliminate extraneous phase wrap artifact.
The functional operations of the controller 170, including detecting the discontinuities in the signal phase variations, determining a position of the device based on detected discontinuities, generation of a reference image, e.g., by conventional MRI imaging techniques from the data from the external RF receiver 160, generation of an image representation of the device, and display of the image representation superimposed on the reference image, can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, or in combinations of them. In some embodiments, functions can be implemented as one or more computer program products, i.e., one or more computer programs tangibly embodied in a machine readable storage media, for execution by, or to control the operation of a processor, e.g., a programmable processor, a computer, or multiple programmable processors or computers.
Although
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 60/974,760, filed Sep. 24, 2007, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60974760 | Sep 2007 | US |