The present invention relates to medical leads and may be particularly suitable for use with MRI compatible medical instruments such as implantable Deep Brain Stimulation (“DBS”) leads and/or implantable sympathetic nerve chain stimulation leads.
Deep Brain Stimulation (DBS) is becoming an acceptable therapeutic modality in neurosurgical treatment of patients suffering from various conditions, including, for example, chronic pain, Parkinson's disease, essential tremor, dystonia and other medical conditions. Other electro-stimulation therapies have also been carried out or proposed using internal stimulation of the sympathetic nerve chain and/or spinal cord, etc.
One example of a prior art DBS system is the Activa® system from Medtronic, Inc. The Activa(® system includes an implantable pulse generator stimulator that is positioned in the chest cavity of the patient and a lead with axially spaced apart electrodes that is implanted with the electrodes disposed in neural tissue. The lead is tunneled subsurface from the brain to the chest cavity connecting the electrodes with the pulse generator. These leads can have multiple exposed electrodes at the distal end that are connected to conductors which run along the length of the lead and connect to the pulse generator placed in the chest cavity.
Generally described, electrostimulation is carried out by delivering a pulse of desired frequency and amplitude in the target cranial tissue, typically using an implanted lead system. These lead systems have electrodes that are exposed at a distal end to contact the target cranial/neuronal tissue. The lead systems are connected to an implanted pulse generator at the other opposing end (proximal end). The distal end of the lead system is implanted in the desired cranial anatomy by stereotactic surgical procedures. In this procedure, a microelectrode system is advanced in the cranial tissue, typically based on MRI, CT or PET images acquired prior to the procedure. The target location for lead implantation in the cranial anatomy may be determined by measuring the electrical signal (EPG) signature of the specific anatomy using a microelectrode system. Typically these procedures are long and there is a clinical need for real time imaging guidance.
Notwithstanding the above, there remains a need for alternative MRI compatible medical lead configurations.
Embodiments of the present invention provide MRI compatible imaging systems comprising an MRI compatible cannula and a cooperating microelectrode system that provide an internal MRI antenna. Certain embodiments are particularly suitable for identifying deep brain target locations for implanting stimulation devices. The systems may be used to access various parts of the cranial tissue using substantially real-time MRI for guiding an implantation and/or interventional procedure. These devices can obtain MRI signals environment to obtain MRI images of the local surrounding anatomy and may be used to detect and/or measure the electrical pulses of the cranial tissue.
Certain embodiments are directed to in vivo deep brain medical probe systems include: (a) an MRI compatible cannula comprising a plurality of concentric axially extending tubes with a receiving bore; and (b) an elongate antenna member with a conductor (which may be a center conductor) and an insulating layer configured to slidably advance through cannula bore to define an MRI receive antenna.
Other embodiments are directed to MRI compatible deep brain imaging and recording probe systems that include: (a) a flexible elongate inner member body having opposing proximal and distal portions, the inner member body comprising at least one recording electrode disposed on the distal portion, the inner member comprising at least one axially extending conductor disposed in a core of the inner member body and an axially extending insulating layer surrounding the conductor for at least a major portion of the length of the conductor; (b) a cannula member having increased rididity relative to the inner member and sized and configured to slidably receive the flexible inner member therethrough, wherein, the inner member and cannula cooperate to define an MRI antenna; (c) an RP transmit decoupling circuit in communication with the inner member with the decoupler circuit configured to decouple the MRI antenna during an MRI RF excitation transmission; and (d) a splitter circuit in communication with the inner member to electrically isolate a recording circuit from an MRI imaging circuit.
Other embodiments are directed a medical kit include: (a) an elongate sterilized bio and MRI compatible internal MRI-antenna probe member having opposing distal and proximal portions, the probe comprising a core with a center conductor and at least one recording electrode in communication with the conductor on the distal portion; and (b) a generally rigid cannula comprising at least two concentric tubular members sized and configured to slidably receive the elongate MRI antenna probe therein. In operation, the MRI antenna probe lead cooperates with the cannula to define an internal MRI antenna.
The kit can also include an implantable flexible elongate stimulation probe sized and configured to slidably extend through an axially extending bore of the cannula.
Still other embodiments are directed to MRI antenna and recording electrode probe systems that include: (a) an MRI compatible cannula having an axially extending bore; (b) an elongate flexible probe having at least one recording electrode held by a distal portion of the probe; and (c) an elongate MRI antenna probe. The probe is configured to slidably extend through the cannula bore, and, in operation, the cannula and antenna probe cooperate to define components of at least one deep brain MRI receive antenna.
Other embodiments are directed to computer program products for operating a multi-purpose MRI compatible recording probe with MRI antenna. The computer program product includes a computer readable storage medium having computer readable program code embodied in the medium. The computer-readable program code includes computer readable program code that controllably engages a first or second operational mode for a MRI compatible recording probe with at least one recording electrode and an MRI antenna. The first operational mode having a first transmission path connecting the MRI antenna with an MRI scanner and decoupling the electrode during MRI operation and the second operational mode having a second transmission path connecting the electrode with a recording source during electrical stimulation or recording.
The computer readable program code may be configured to time the selection of the operational mode to occur proximate in time but after an MRI signal acquisition by the MRI antenna in the first operational mode. The computer readable program code may be configured to obtain microrecordings of local tissue in substantially real time proximate in time to an MRI signal acquisition by the MRI antenna in the first operational mode. The computer readable program code may be configured to obtain a plurality of MRI signals of local neural tissue proximate the MRI antenna in substantially real time, then obtain a plurality of microrecordings of the local neural tissue to allow a clinician to track placement of the probe using both MRI data and audio data.
In some embodiments, the cannula is configured to cooperate with the MRI antenna probe to define an MRI receive antenna when the MRI antenna probe is held inside the cannula. In particular embodiments, the cannula comprises a conductive shielding layer that cooperates with the MRI antenna probe to define an MRI receive antenna during positioning in a body used to obtain MRI signals for MRI positional guidance. In operation, the antenna probe can remain in placed and guide the stimulation probe into position or be removed from the cannula and replaced with the stimulation probe, which is then inserted to the same target location identified by the antenna probe.
Other embodiments are directed to MRI compatible deep brain imaging and probe systems. The systems include: (a) a flexible elongate inner member having opposing proximal and distal portions, the inner member comprising at least one optic fiber in a core of the inner member; (b) a cannula member having increased rigidity relative to the inner member and sized and configured to slidably receive the flexible inner member therethrough, wherein, the inner member and cannula cooperate to define an MRI antenna; and (c) an RF transmit decoupling circuit in communication with the inner member, wherein the decoupler circuit is configured to decouple the MRI antenna during an MRI RF excitation transmission.
These and other embodiments will be described further below.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. It will be appreciated that although discussed with respect to a certain antenna embodiment, features or operation of one lead system embodiment can apply to others.
In the drawings, the thickness of lines, layers, features, components and/or regions may be exaggerated for clarity and broken lines illustrate optional features or operations, unless specified otherwise. In addition, the sequence of operations (or steps) is not limited to the order presented in the claims unless specifically indicated otherwise. It will be understood that when a feature, such as a layer, region or substrate, is referred to as being “on” another feature or element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another feature or element, there are no intervening elements present. It will also be understood that, when a feature or element is referred to as being “connected” or “coupled” to another feature or element, it can be directly connected to the other element or intervening elements may be present. In contrast, when a feature or element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Although described or shown with respect to one embodiment, the features so described or shown can apply to other embodiments.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this application and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Probe embodiments of the present invention can be configured to image, record and/or stimulate any desired internal region of the body or object. The object can be any object, and may be particularly suitable for animal and/or human subjects. Some probe embodiments can be sized and configured for deep brain interrogation. Some probe embodiments can be configured to place interventional devices to treat, such as stimulation electrodes to stimulate a desired region of the brain and/or sympathetic nerve chain. Examples of known stimulation treatments and/or target body regions are described in U.S. Pat. Nos. 6,708,064; 6,438,423; 6,356,786; 6,526,318; 6,405,079; 6,167,311; 6539,263; 6,609,030 and 6,050,992, the contents of which are hereby incorporated by reference as if recited in full herein.
In some embodiments, as shown in
In this embodiment, the conductive core 10c can connect to the electrode 15 and the insulating layer on the inner member 10 can be configured to expose the electrode 15 (i.e., the insulating layer or material can provide a gap or terminate at the location of the electrode). The electrode 15 can be generally cylindrical or configured in any desired configuration. In this embodiment, the assembly 5 can define a bimodal device that provides both a microelectrode recording operational mode as well as an internal MRI antenna receive mode (typically electrically isolated so that each mode is not concurrently operative).
Generally stated, the assembly 5 can be configured so that components of the cannula 75 and microelectrode 15 system form one or more internal MRI RF antennas 5I that can be matched and tuned at the MRI frequency of interest. The assembly 5 can include or be in communication with a matching/tuning and RF decoupling circuit 124 (
In some embodiments, a typical system 5 may comprise two discrete members, a cannula 75 and an inner tubular member 10, that may be an insulated wire, that can be termed an MRI antenna probe 10. The cannula 75 can comprise two or more concentric tubes, each insulated from the other and arranged to form an MRI antenna 5I, namely a loopless/dipole antenna (
An internal member 10 can cooperate with the cannula 75 and act as an MRI antenna 5I (an RF antenna), which is advanced in the cannula 75 and used to obtain an MRI image of the surrounding anatomy. A recording electrode 15 thereon can be used to obtain and/or measure microelectric signals from the intracranial tissue. The MRI image data and microrecording data can facilitate more exact identification of target cranial anatomy for placement of an implantable DBS lead systems.
As shown in
The system 5 may be used with an MRI scanner as shown in
In some embodiments, the inner member 10 and the cannula 75 can be made to work in conjunction with each other, where the function of the cannula tubings can be dependent on the length of the member 10 in the cannula 75. In a typical procedure, the cannula 75 will be advanced in the cranial anatomy, and the imaging coil will be advanced in the cannula and into the tissue. When the antenna probe member 10 is partially outside the distal end of the cannula 75, the probe 10 acts as the core 10c of the loopless antenna 5I and the cannula 75 as the shield of the loopless antenna. When the antenna probe 10 is outside the cannula 75 to a desired length, the cannula 75 ceases to act as the shield but acts as an RF choke to the inner member 10. This mechanism can be built in into the handle section of the inner member 10.
In other embodiments the cannula can be configured to define all or a portion of an inductor loop antenna configuration, a multiple inductor loop configuration, an opposed solenoid coil, etc. The inner imaging antenna probe may be configured in other manners, such as, but not limited to an inductor loop coil, a quadrature loop coil, etc.
It is also noted that the RF splitter circuit 125 (
In another embodiment, the concentric tubings 20, 30 of the cannula 75 system 5 are not permanently connected to each other and are able to slide inside the other as noted above. Depending on their relative positions, the components perform different electrical functions. For example, the cannula 75 can include two concentric tubings, which slide relative to each other and can be removed as desired or appropriate during the procedure. When the inner tubing 10 extends out of the intermediate tubing 20, it can act as the core of the loopless antenna. The inner member 10 can also include one or two or more concentric (which may be slidable) tubes, all insulated from each other, and with an innermost wire. Thus, when extended or advanced, the innermost wire forms the core of the loopless antenna, and the outer tubings can form the shield and/or the balun. Also the cannula related tubings can form a part of the shield or the RF choke balun, depending on the location of the inner coils with respect to the cannula tubings.
The cannula 75 can be configured with a generally rigid body and/or a body that has increased rigidity relative to at least the inner member 10. The cannula 75 can be configured to slidably receive at least the distal and intermediate portions of the inner member 10 and/or probe body 100 (
For MRI compatible uses, the cannula 75, the members 10, 20, 30, an MRI interface cable and connectors 40, 50 can comprise non-magnetic MRI compatible material(s). In some embodiments, the kit can include an implantable pulse generator 50 as well as the implantable stimulation lead 100 which may also comprise MRI compatible materials to allow post-placement MRI interrogation of the subject. As described above, the stimulation lead 100 can be configured to be guided through the same cannula 75 as the antenna 5I. In some embodiments, the antenna core 10 is removed after a desired location is determined, then the stimulation lead or other device is guided through the cannula 75 to the target location. In other embodiments, the core remains in position and the interventional device guided therethrough as noted above.
The MRI antenna 5I is configured to pick-up MRI signals internally from local tissue during an MRI procedure. In some embodiments, the antenna 51 has a focal length or signal-receiving length of between about 1-5 cm, and typically is configured to have a viewing length to receive MRI signals from local tissue of between about 1-2.5 cm. The MRI antenna 5I can be a loopless antenna such as shown in
It is contemplated that the electrode(s) of the antenna 5I and/or the stimulation lead 100 can be sized and configured to “fit” the desired internal target, which may be a relatively small region, such as less than about 1-3 mm. Typically, as shown in
Generally stated, the assembly has two primary operational modes with different electric transmission paths, which are electrically directed using the splitter circuit 125 (
During MRI guided clinical implantation of the probe can first be used as an MRI antenna 5I to provide high resolution imaging of the target internal anatomy (such as neural tissue) and to locate the position of the electrode 15 in the body by obtaining MRI signals and hence, images, that are acquired by the external coils and/or internal MRI antenna. The electrodes 15 can also be used to assess location via acquiring or sensing electrical signals from the target (neural) anatomy.
The cannula 75 may be sized and configured to be a universal delivery system cannula 75 that can slidably serially receive selectable different elongate probes, such as the microelectrode and stimulation electrode probes discussed above. For example, the universal system cannula 75 can be configured to selectably receive different elongate members, such as, but not limited to, at least two of the following MRI compatible devices: an MRI antenna probe, an optic probe, a depth probe, an EEG probe, a stimulation probe (which may be implantable), a biopsy probe, an ablation probe, and a drug and/or fluid delivery and/or extraction probe (catheter, shunt and the like). The MRI antenna probe may be a standalone MRI antenna probe that cooperates with the cannula 75, or may be combined with any of the other probe functions. For example, the probe 5 can be configured to provide a combination biopsy needle and MRI antenna probe when positioned in the cannula 75. An example of a needle antenna is described in U.S. Pat. No. 6,606,513, the contents of which are hereby incorporated by reference as if recited in full herein.
As such, the cannula 75 can have an ID (inner diameter) that allows different selected probes to be guided therethrough, or one or more of the tubes (such as the intermediate tube 20 in a three tube configuration) can be removed when the cannula 75 is used with larger probes. That is, one or more of the cannula tubes can act a removable sleeve for certain probes. In other embodiments, the cannula 75 has a fixed ID, and the different probes have a substantially similar OD (outer diameter), or one or more of the different probes can use sleeves to provide the desired size that allow them to be guided reliably into location with the same cannula 75. The OD of the different selectable inner members, usable with a universal cannula 75, can be between about 0.5-3 mm, and in some embodiments is about 1.5 mm or less, typically about 1.3 mm or less, and more typically between about 1.27-1.3 mm. The OD of the cannula 75 may be about 2 mm. The members 10, 20 and 30 can be provided as differently sized sets that allow for deep or shallow placement. The shallow probe placement can employ lengths that are ⅕-⅓ the length of the deep placement members described above.
The cannula 75 and probe members can be provided as differently sized sets that allow for deep or shallow in vivo placement and/or for use with about a 1.5T or about a 3.0 T MRI System. For brain applications, the shallow probe placement can employ lengths that are at least about 3 cm, typically about 3 cm. The deep placement members can be at least about 7 cm long, typically between about 7-8 cm long. Different French size probes and/or different length probes may generate different loads and tuning may be adjusted accordingly. The antenna probes can be tuned remotely so that substantially the entire length or a selected portion thereof is active.
In some embodiments, as shown in
The coaxial cable 40 can be in electrical communication with the cladding of the probe 220 as well as the intermediate cannula member 20, as described for the embodiment shown in
As shown in
As will be appreciated by those of skill in the art, the operating system 452 may be any operating system suitable for use with a data processing system, such as OS/2, AIX, DOS, OS/390 or System 390 from International Business Machines Corporation, Armonk, N.Y., Windows CE, Windows NT, Windows95, Windows98, Windows2000 or other Windows versions from Microsoft Corporation, Redmond, WA, Unix or Linux or FreeBSD, Palm OS from Palm, Inc., Mac OS from Apple Computer, LabView, or proprietary operating systems. The I/O device drivers 458 typically include software routines accessed through the operating system 452 by the application programs 454 to communicate with devices such as I/O data port(s), data storage 456 and certain memory 414 components. The application programs 454 are illustrative of the programs that implement the various features of the data processing system and can include at least one application, which supports operations according to embodiments of the present invention. Finally, the data 456 represents the static and dynamic data used by the application programs 454, the operating system 452, the I/O device drivers 458, and other software programs that may reside in the memory 414.
While the present invention is illustrated, for example, with reference to the Module 450 being an application program in
The I/O data port can be used to transfer information between the data processing system or another computer system or a network (e.g., the Internet) or to other devices controlled by the processor. These components may be conventional components such as those used in many conventional data processing systems, which may be configured in accordance with the present invention to operate as described herein.
The computer-readable program code can include computer readable program code that controllably engages a first or second operational mode for a MRI compatible antenna and recording probe with at least one electrode and an MRI antenna. The first operational mode having a first transmission path connecting the MRI antenna with an MRI scanner and decoupling the electrode during MRI operation and the second operational mode having a second transmission path connecting the electrode with a recording source during electrical recording.
The computer readable program code may be configured to time the selection of the operational mode to occur proximate in time but after an MRI signal acquisition in the first operational mode. The computer readable program code may be configured to operate the second mode to obtain microrecordings of local tissue in substantially real time proximate in time to an MRI signal acquisition by the MRI antenna in the first operational mode. The computer readable program code may be configured to obtain a plurality of MRI signals of local neural tissue proximate the MRI antenna in substantially real time, then obtain a plurality of microrecordings of the local neural tissue to allow a clinician to track placement of the probe using both MRI data and audio data.
The flowcharts and block diagrams of certain of the figures herein illustrate the architecture, functionality, and operation of possible implementations of the present invention. In this regard, each block in the flow charts or block diagrams represents a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
The present invention is explained further in the following non-limiting Example.
The micro-electrode loopless antenna member was fabricated from Nitinol tube with an insulated gold-plated wire inside the Nitinol tube forming the core of the antenna. The dipole end portion of the antenna was about 1.5 cm and was not insulated at the outermost end portion for about 1 mm to permit EEG measurements. The shield of the antenna was coiled at the distal end portion to reduce the overall loading length to about 3 cm. The member was insulated by a 500 micron polyester layer (except for the distal tip of the member to permit EEG measurements as noted above). The cannula and microelectrode antenna member were matched and tuned to about 123.2 MHz and decoupled from pick-up during MRI excitation via a decoupling circuit/switch similar to that described in Ocali et al., Intravascular magnetic resonance imaging using a loopless catheter antenna, Magn Reson Med, 1997; 37: pp. 112-118.
MRI testing of the cannula and antenna/microelectrode member were performed on the 2.9T Siemen's Allegra® scanner. RF power deposition safety testing was carried out in a polyacrylamide gel phantom of conductivity 0.9 S/m. A nominal 4W/kg SAR (head) MRI sequence was applied for 3.4 minutes. The cannula and the microelectrode/antenna member were placed about 1 cm from the edge of the phantom and the local temperature was measured directly using FISO fiber-optic temperature probes. Actual SAR was calculated from the rate of the initial temperature rise and the specific heat of the gel. The MRI signal to noise ratio (SNR) of the microlectrode/antenna and cannula system was tested in a saline phantom with variable depths of insertion (3 cm and 10 cm) to simulate some clinical conditions.
The feasibility of using the cannula and microelectrode/antenna system for MRI-guided access to the brain (deep brain), such as the STN (subthalamic nucleus), was tested in a primate with protocols approved by the appropriate Animal Care and Use committee. Preoperative MRI and CT images were obtained to locate a head mount and determined a trajectory for microelectrode advancement. The animal was anesthesized, a burr hole prepared, a head mount assembly fixed to the skull and the cannula/antenna system advanced under real-time MRI guidance to the location of the STN. To increase SNR and field-of-view, images obtained from the scanner's external head coil and the internal antenna probe were combined using a phased array adapter.
The cannula/loopless antenna and coaxial cable had an impedance of about 25 ohms. The RF choke created between the primary and secondary shielding had an isolation of about 550 ohms when the antenna/cannula was loaded up to about 4 cm in the saline phantom. The coaxial cable of the microelectrode/antenna member had an impedance of about 32 ohms. The SNR profile of the antenna demonstrated about a 50% improvement over the external head coil in a circular region of about 5 mm radius around the distal end portion of the antenna/microelectrode member. In the primate study, the signal from the scanner's had coil depicts the overall cranial anatomy while the local SNR enhancement provided by the cooperating MRI compatible cannula and microelectrode/antenna member as the coil advanced into the STN is shown in
The experiment demonstrated that a cooperating MRI compatible cannula and microelectrode/antenna member suitable for intra-cranial interventions can be fabricated and provide substantial local SNR improvements. The local SNR improvement can provide enhanced local spatial registration for precise anatomical guidance/positioning
In the drawings and specification, there have been disclosed embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims. Thus, the foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses, where used, are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims the benefit or priority to U.S. Provisional Patent Application Ser. No. 60/591,409, filed Jul. 27, 2004 and U.S. Provisional Patent Application Ser. No. 60/608,232, filed Sep. 9, 2004, the contents of these applications are hereby incorporated by reference as if recited in full herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/026508 | 7/26/2005 | WO | 00 | 1/24/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/014966 | 2/9/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5928145 | Ocali et al. | Jul 1999 | A |
6765779 | Stevenson et al. | Jul 2004 | B2 |
6765780 | Brendel | Jul 2004 | B2 |
6888715 | Stevenson et al. | May 2005 | B2 |
6987660 | Stevenson et al. | Jan 2006 | B2 |
7012192 | Stevenson et al. | Mar 2006 | B2 |
7035077 | Brendel | Apr 2006 | B2 |
7038900 | Stevenson et al. | May 2006 | B2 |
7136273 | Stevenson et al. | Nov 2006 | B2 |
7310216 | Stevenson et al. | Dec 2007 | B2 |
7489495 | Stevenson | Feb 2009 | B2 |
7535693 | Stevenson et al. | May 2009 | B2 |
7623335 | Stevenson et al. | Nov 2009 | B2 |
7689288 | Stevenson et al. | Mar 2010 | B2 |
7751903 | Stevenson et al. | Jul 2010 | B2 |
7765005 | Stevenson | Jul 2010 | B2 |
7787958 | Stevenson | Aug 2010 | B2 |
7822460 | Halperin et al. | Oct 2010 | B2 |
7844319 | Susil et al. | Nov 2010 | B2 |
7853325 | Dabney et al. | Dec 2010 | B2 |
7899551 | Westlund et al. | Mar 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7917219 | Stevenson et al. | Mar 2011 | B2 |
20010053885 | Gielen et al. | Dec 2001 | A1 |
20020045816 | Atalar et al. | Apr 2002 | A1 |
20030009207 | Paspa et al. | Jan 2003 | A1 |
20030050557 | Susil et al. | Mar 2003 | A1 |
20030179536 | Stevenson et al. | Sep 2003 | A1 |
20030195405 | Marino et al. | Oct 2003 | A1 |
20030213604 | Stevenson et al. | Nov 2003 | A1 |
20030213605 | Brendel et al. | Nov 2003 | A1 |
20040046557 | Karmarkar et al. | Mar 2004 | A1 |
20040201947 | Stevenson et al. | Oct 2004 | A1 |
20040257747 | Stevenson et al. | Dec 2004 | A1 |
20050007718 | Stevenson et al. | Jan 2005 | A1 |
20050190527 | Stevenson et al. | Sep 2005 | A1 |
20050201039 | Stevenson et al. | Sep 2005 | A1 |
20050219787 | Stevenson et al. | Oct 2005 | A1 |
20050247475 | Stevenson et al. | Nov 2005 | A1 |
20050248907 | Stevenson et al. | Nov 2005 | A1 |
20060028784 | Brendel | Feb 2006 | A1 |
20060085043 | Stevenson | Apr 2006 | A1 |
20060212096 | Stevenson | Sep 2006 | A1 |
20060221543 | Stevenson et al. | Oct 2006 | A1 |
20070019362 | Stevenson et al. | Jan 2007 | A1 |
20070288058 | Halperin et al. | Dec 2007 | A1 |
20080049376 | Stevenson et al. | Feb 2008 | A1 |
20080065181 | Stevenson | Mar 2008 | A1 |
20080116997 | Dabney et al. | May 2008 | A1 |
20080119919 | Atalar et al. | May 2008 | A1 |
20080132987 | Westlund et al. | Jun 2008 | A1 |
20080269591 | Halperin et al. | Oct 2008 | A1 |
20090116167 | Stevenson et al. | May 2009 | A1 |
20090259265 | Stevenson et al. | Oct 2009 | A1 |
20100016936 | Stevenson et al. | Jan 2010 | A1 |
20100023000 | Stevenson et al. | Jan 2010 | A1 |
20100023095 | Stevenson et al. | Jan 2010 | A1 |
20100066371 | Vij | Mar 2010 | A1 |
20100160997 | Johnson et al. | Jun 2010 | A1 |
20100168821 | Johnson et al. | Jul 2010 | A1 |
20100174349 | Stevenson et al. | Jul 2010 | A1 |
20100191236 | Johnson et al. | Jul 2010 | A1 |
20100198312 | Stevenson et al. | Aug 2010 | A1 |
20100217262 | Stevenson et al. | Aug 2010 | A1 |
20100222857 | Halperin et al. | Sep 2010 | A1 |
20100280584 | Johnson et al. | Nov 2010 | A1 |
20100321163 | Stevenson | Dec 2010 | A1 |
20100324639 | Stevenson et al. | Dec 2010 | A1 |
20100329527 | Iannotti et al. | Dec 2010 | A1 |
20110022140 | Stevenson et al. | Jan 2011 | A1 |
20110040343 | Johnson et al. | Feb 2011 | A1 |
20110054582 | Dabney et al. | Mar 2011 | A1 |
20110210731 | Walsh | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1048317 | Nov 2000 | EP |
WO-0038574 | Jul 2000 | WO |
WO 2004095281 | Nov 2004 | WO |
WO 2005114685 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080097193 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60591409 | Jul 2004 | US | |
60608232 | Sep 2004 | US |