The present invention relates to magnetic resonance imaging (MRI), and more specifically to apparatus and methods for performing MRI using radio frequency (RF) gradients for spatial encoding.
Conventional MRI techniques use linear B0 gradients for spatial encoding. However, B0 gradients have high cost and bulk, and lead to patient discomfort via acoustic noise and peripheral nerve stimulation. A few spatial encoding methods have been proposed that use only RF gradient coils, which would not suffer the drawbacks of B0 gradients. However, existing RF gradient encoding methods severely restrict the types of sequences and subsequently image contrast that can be obtained. What is needed is an RF encoding method that leads to the same orthogonality between spatial encoding and image contrast that is enjoyed by conventional B0 gradients.
Embodiments of the invention concern systems and methods for performing MRI using RF gradients for spatial encoding. One aspect of the invention involves providing |B1+|-selective pulses designed using the Shinnar-Le Roux algorithm. Another aspect of the invention involves RF encoding based on the Bloch-Siegert (BS) shift. Together, these techniques can be used to support MRI based on RF gradient encoding instead of the conventional B0 encoding.
The present invention is described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the instant invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
As noted above, conventional MRI using B0 gradient has various disadvantages that could be overcome via MRI techniques using RF field gradient encoding methods. Such techniques could involve providing an MRI scanner system capable of supporting not only RF field gradients for spatial encoding, but also B1 selective pulses to provide the proper excitation pulse when providing RF field gradient encoding.
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, an MRI system suitable for carrying out the various embodiments of the invention is generally shown at 10 in
The MRI system 10 conventionally images a region of interest (ROI) 28 of the object 24. For simplicity, the ROI 28 is shown as a human head in
The object 24 typically imaged by the MRI system 10 includes a plurality of atomic nuclei within organic matter such as tissue, bones, etc. However, the various embodiments are not limited in this regard. In some embodiments, the systems and methods described herein are can be utilized for imaging applications in various fields, including food science and production, manufacturing industries, and petroleum, natural gas, or other energy industries, to name a few.
In
The ROI 28 includes a plurality of in-slice spins 32 within each respective slice 30 being imaged. The in-slice spins 32 release a nuclear magnetic resonance (NMR) signal for enabling acquisition of image data, as will be described below. The ROI 28 further includes a plurality of out-of-slice spins 33 outside each respective slice 30 being imaged within the ROI 28. For simplicity, a single in-slice spin 32 is shown in
The field magnet 12 can be used to produce a substantially homogeneous magnetic field through the bore 22 in which the object 24 is placed. The homogeneous magnetic field is hereinafter referred to as a B0 field. As shown in
As will be described below, the ROI 28 of the object 24 is subjected to the B0 field. In turn, the in-slice spins 32 and out-of-slice spins 33 within the ROI 28 align with the longitudinal axis (z) of the B0 field. Transverse magnetization is generated as the spins 32, 33 rotate toward the transverse plane (x, y). The MRI system 10 is configured to detect the transverse magnetization and create image data based on the detected transverse magnetization.
The gradient coils 14 are typically driven by a gradient controller 34. As the gradient coils 14 are driven, the gradient coils 14 produce respective magnetic field gradients Gx, Gy, Gz for spatially encoding positions of the spins 32, 33. Magnetic field gradients Gx, Gy, Gz are generated along the first transverse axis (x), the second transverse axis (y), and the longitudinal axis (z), respectively. The gradient coils 14 apply the magnetic field gradients Gx, Gy, Gz to vary the B0 field linearly across the ROI 28 under imaging. The gradient coils 14 selectively superimpose the magnetic field gradients Gx, Gy, Gz on the B0 field to enable selective spatial excitation of the ROI 28. Spatial excitation may include slice-selective excitation. The gradient coils 14 also enable tailored excitations. However, in certain embodiments, one or more of these gradient fields can be omitted. For example, such as in a fully RF-encoded MRI system.
The MRI system 10 employs the RF coil 16 and the RF transmitter 18 to produce a sequence of RF pulses which are applied to the ROI 28. The sequence of RF pulses is applied to the spins 32, 33 generally to excite and temporarily manipulate the spins 32, 33. The MRI system 10 may employ any suitable method for producing the sequence of RF pulses, including but not limited to, methods employing a single channel or multi-channel transmission array.
The MRI system 10 includes the RF receiver 20 for receiving the NMR signal released by the in-slice spins 32. The MRI system 10 includes a processor 36 to process the NMR signals to form part of the image corresponding to the ROI 28 of the object 24. The MRI system 10 repeatedly applies the sequence of RF field gradients and selective excitation pulses along several slices 30 of the ROI 28 to construct the entire image of the ROI 28. The processor 36 is connected to a display to provide the image of the ROI 28 on the display.
The above-mentioned system describes a system for conventional MRI. However, as noted above, the various embodiments are directed to systems utilizing RF gradients instead of conventional B0 gradients. Accordingly, the system described above can be modified as follows to provide the imaging in accordance with the various embodiments. In particular, at least one of the conventional B0 gradient coils can be replaced with an RF frequency-encoding gradient coil (or a set of RF coils driven simultaneously in such a manner so as to produce a desired RF gradient encoding field). Such an RF frequency-encoding gradient coil can be then used, as described in further detail below, to encode signal spatial position. That coil need not necessarily produce a linearly-varying amplitude field. Additionally, the system described above can be further modified to include additional switching and filtering hardware to enable simultaneous RF transmission and reception. That is, RF coils in such as system could be used for both spatial encoding, excitation and reception, and their roles may change within a single scan. Finally, the RF gradient-encoding coils need not be built into the bore like B0 gradients, but could be integrated into a single smaller package that wraps directly around only the anatomy of interest.
The MRI system 10 in
The use of RF gradient encoding over linear B0 gradients is preferable to avoid the high cost and bulk and potential patient discomfort, via acoustic noise and peripheral nerve stimulation. However, conventional RF gradient encoding methods severely restrict the types of sequences and subsequently image contrast that can be obtained. Accordingly, the various embodiments of the invention provide an RF encoding method that leads to the same orthogonality between spatial encoding and image contrast that is enjoyed by conventional B0 gradients.
Some studies have explored performing to perform RF encoding using the Bloch-Siegert (BS) shift. However conventional means for RF encoding using the BS shift have addressed only BS phase encoding, wherein an off-resonant pulse with a fixed off-resonance frequency is used to generate a phase shift prior to signal acquisition. However, this limits acquisition to a single projection of the data per repetition time (TR). In contrast, the various embodiments of the invention provide a BS shift can be used for frequency encoding, wherein an off-resonant pulse is played out simultaneously with signal acquisition, to enable faster scanning via simultaneous k-space traversal and signal acquisition. That is, to enable acquisition of multiple data projections consecutively in a single TR period.
RF Encoding Sequence. A sequence for RF frequency encoding based on the BS shift, in accordance with the various embodiments, is described with respect to
First, at interval (1) of
As noted above,
Signal Equation for RF Encoding Sequence. A signal expression can be derived based on trigonometric relationships. The locked magnetization M⊥ traces an elliptical path in the transverse XY plane. The detectable MR signal of each voxel at Larmor frequency ω0 can be derived as:
S(t)∝exp(iωRFt)∫dx{|M⊥(x)|(cos(φinit(x)−φ(x,t))+i sin(φinit(x)−φ(x,t))cos(Ψ(x)))} (1)
Here, φinit is the initial phase of M⊥ before the encoding, and Ψ is the angle between the plane perpendicular to Beff and the X-Y plane during interval (3)b, and
It should be noted that with conventional B0 gradient encoding,
ωRF=0 (4)
cos(Ψ)=1 (5)
φ(x,t)=2πk(t)·x=γ∫0td{circumflex over (t)}G(x,{dot over (t)})·x) (6)
Image Reconstruction. Because the signal precesses elliptically due to the cos(Ψ) term, the detected signal has a non-linear dependence on the complex transverse magnetization M⊥. Thus image reconstruction must comprise a fit of |M⊥|, and φinit at each spatial location to the nonlinear signal model.
Acquired Resolution. Assuming a linear RF field gradient B1(x)=cx, for a given desired spatial resolution Δx and ωRF, the required total sampling duration T is dictated by the spatial location in the object with the lowest |B1+| amplitude, according to:
As noted above, the RF gradient encoding methods of the various embodiments need to be used with the proper type of excitation pulse to provide imaging. In particular, the various embodiments of the invention can rely on the use of B1+-selective RF pulses.
In 1980 Hoult described ‘Rotating Frame Selective Excitation Pulses’ that selectively excite magnetization based on the strength of the RF transmit field (|B1+|) they experience. The pulses were intended for use in rotating frame imaging, but could be used for slice selection in any of several RF gradient-based imaging methods that have been proposed since. The pulses were based on the assumption of a large and constant B1,x gradient field. When this field was switched on, initially-longitudinal magnetization would precess around it in the y-z plane. Hoult showed that by modulating the B1,y field, magnetization could be selectively excited based on the magnitude of the B1,x component (the strength of B1,y was implicitly assumed to be constant across space). The pulses were designed by analogy to B0-selective excitation, wherein B1,x was treated as the longitudinal gradient field, and B1,y the perpendicular field responsible for flipping magnetization. Assuming a constant B1,x waveform was played (analogous to the constant B0 gradient used in conventional slice-selective excitation), pulse design then amounted to designing the B1,y modulation required to obtain the desired slice profile. Somewhat improved design methods and results were described several years later. To date however, no clear algorithm has been reported to design the pulses to meet target slice profile characteristics, in analogy to the Shinnar-Le Roux algorithm which is widely used for conventional slice-selective pulse design.
In the various embodiments, the |B1+|-selective pulse design problem was recast as one of designing a frequency modulation waveform rather than a B1,y field component, and show that the small-tip-angle Shinnar-Le Roux (SLR) algorithm can be used to directly design this waveform for excitations (0-90° tip angles) and inversions. The result is a simple and fast pulse design approach that inherits the ease-of-use of SLR, provides a substantial improvement in the selectivity of the pulses over previous design methods, and enables the excitation of larger tip-angles. Therefore, algorithm of the various embodiments extends the attractive properties of the Shinnar-Le Roux algorithm to the design of |B1+|-selective pulses. These include speed and the ability to predict slice profile characteristics analytically, and to thereby make tradeoffs between pulse parameters before ever designing a pulse and evaluating it. Thus, this eliminates the need for a guess-and-check approach to pulse design and makes the design process more accessible to non-experts.
Further, previous methods for |B1+|-selective pulse design focused on the design of the y-component of the RF field, and assumed that the amplitude of the overall field was independent of that component. In contrast, by directly designing the frequency modulation waveform rather than the y-component of the RF field, the algorithm described herein eliminates a source of approximation error in the pulse design that may have hampered previous methods.
RF Waveform Definitions
The algorithm of the various embodiments directly designs an RF frequency modulation waveform ΔωRF(t) that is paired with an amplitude and sign modulation waveform A(t) to comprise a |B1+|-selective excitation pulse. Given these waveforms, the pulse can be expressed in terms of its x and y components as:
{right arrow over (B)}
1(t)=|B1+|A(t)({circumflex over (x)} cos(φ(t)+∠B1+)+{circumflex over (y)} sin(φ(t)+∠B1+)), (8)
where
will be real-valued, with a maximum amplitude of one, and without loss of generality we will assume ∠B1+=0. In a frame rotating at ω0+ΔωRF(t), where ω0 is the Larmor frequency, the pulse comprises two vector components that are illustrated in
Rotated spinor parameters. The SLR algorithm of the various embodiments was developed to design a transverse RF field waveform that is played simultaneously with a constant gradient waveform for slice selection. In |B1+|-selective pulse design by SLR, ΔωRF(t) takes the place of the transverse RF field waveform, and A(t) takes the place of the gradient waveform for slice selection, and is scaled by |B1+| rather than by a spatial coordinate. This configuration is achieved by rotating the definition of the pulse's spinor parameters α and β: whereas conventionally α represents rotations about the z-directed gradient field (the ‘free precession’ axis) and β represents rotations about the RF field with x and/or y components (the ‘nutation’ axis), for |B1+|-selective SLR pulse design a is redefined to represent rotations about the x-axis, and β is redefined to represent rotations about a field with z and/or y components. α will thereby represent rotations about the transverse |B1+|A(t) field, and β will represent rotations about the z-directed ΔωRF(t)/γ field. Definitions of the magnetization components remain unchanged.
Target excitation profile. The SLR algorithm is based on relating target magnetization profiles (Mx, My, and Mz) to spinor parameter profiles (α and β) whose discrete Fourier transform (DFT) coefficients can be inverted to obtain the RF pulse that produces them. To apply the algorithm to design an ΔωRF(t) waveform that excites a slice along the |B1+| axis, we must express target excitation profiles in terms of the rotated α and β parameters. The inverse SLR transform can then compute the ΔωRF(t) waveform that corresponds to those parameters. Given initial magnetization Mzy−Mz−+1My−, and Mx−, the magnetization after a pulse with rotated α and β parameters will be:
For initial magnetization at thermal equilibrium ((Mx−, My−, Mz−)=(0,0,1)), the excited transverse magnetization will be:
M
x
+=−α*β*−αβ=−2(αRβR−αIβI) (10)
M
y
+=ℑ{(α*)2−β2}=−2(αRαI+βRβI), (11)
where the R and I subscripts denote the real and imaginary parts of the parameters, respectively. As in conventional linear-phase SLR pulse design and previous |B1+|-selective design methods, we will design pulses that produce constant—(specifically, zero-) phase profiles across the excited slice so that My+=0. For these pulses βI will also be zero. If one further restricts consideration to small-tip-angle pulses with A(t) waveforms that have zero integrated area, then αR≈1 and αI≈0. In this case,
M
x
+=−2βR, (12)
and My+=0. Therefore, βR is the parameter of interest for digital filter design in the |B1+|-selective SLR algorithm. Conveniently, because Mx+=−2βR also for a conventional refocused small-tip-angle slice-selective pulse, the same ripple relationships also apply to |B1+|-selective pulse design.
Unlike conventional slice-selective excitation, a |B1+|-selective slice profile cannot be centered at |B1+|=0 since excitation cannot occur with zero RF field. Thus, the slice profile must be shifted away from this point. A slice-selective excitation is conventionally shifted using frequency modulation of the RF pulse; however, this would result in complex β DFT coefficients, and subsequently a complex-valued ΔωRF(t) waveform. The ΔωRF(t) waveform must be real-valued to be physically realizable, which dictates that the β DFT coefficients must be purely imaginary, since a small-tip RF pulse designed by SLR is π/2 out of phase with its β DFT coefficients. The required purely imaginary β DFT coefficients can be obtained by specifying an odd and dual-band (anti-symmetric) β profile. Thus, the target β profile must be real-valued, dual-band, odd, and zero at |B1+|=0. The corresponding ΔωRF(t) will be real-valued and odd.
β filter design. A real-valued, odd, and dual-band β profile and its corresponding DFT coefficients can be designed in several ways. For well-separated passbands (i.e., centered at sufficiently high |B1+|), the process can start with a conventional single-band linear-phase finite impulse response filter designed using a weighted-least squares method. That filter is then duplicated, and the duplicates are frequency modulated to opposite center frequencies and subtracted from each other. This is equivalent to modulation of the single-band filter by a sine function at the center frequency. For very close passbands (i.e., passbands close to |B1+|=0) however, ripples from one band can distort the other. In these cases, an odd, dual-band β filter can be designed directly using weighted-least-squares. The distortions could also be mitigated using a phase-correction method. Once the β filter is designed, assuming small excitation angles the inverse SLR transform reduces to a simple scaling of the filter coefficients to obtain the ΔωRF(t) waveform.
A(t) waveform construction. The SLR algorithm conventionally designs an RF pulse that accompanies a constant gradient waveform. In |B1+|-selective pulse design, A(t) replaces the gradient waveform. In the small-excitation angle regime, the α profile at the end of a pulse with duration T is:
and the β profile is:
is the pulse's |B1+|-frequency trajectory. From Eq. 14, it is evident that if A(t) is constant and comprises no pre- or rewinder lobes before or after the ΔωRF(t) waveform to achieve zero total area, then αI≠0, which is unacceptable. Zero total area could be achieved by adding a negative rewinder lobe to A(t) with the same area as the main lobe, but according to Eq. 15 this would create a nonzero βI since ΔωRF(t) would deposit energy at negative frequencies only, as depicted in the middle column of
A real and odd β profile can only be produced if ΔωRF(t) deposits energy anti-symmetrically as a function of frequency, and therefore cannot be produced with this trajectory. Placing the rewinder lobe at the beginning of the pulse would also lead to nonzero βI. Thus, in some embodiments of the invention, the desired symmetric k(t) can be restored by splitting the rewinder lobe, so that half is played at the beginning and half at the end, as shown in the right column of
Maintaining selectivity at large tip-angles.
Selective Pulse Design Algorithm. Given the RF digital-to-analog conversion dwell time Δt (seconds), the time-bandwidth product TB, the pulse type (small-tip, excitation, inversion, or saturation), the tip angle Θ (radians), the passband width PBW (Gauss), the passband center PBC (Gauss), and the passband (δ1,e) and stopband (δ2,e) ripple levels (units of M0−1), the steps of the |B1+|-selective pulse design algorithm are:
m=[1 1 0 0] (20)
The following examples and results are presented solely for illustrating the various embodiments and are not intended to limit the various embodiments in any way.
Frequency Encoding Validation. First, in order to validate the sequence design, signal expression, and reconstruction based on the BS shift method of the various embodiments, a simulation study was performed in MATLAB. A 1D magnetization profile with a linear |M⊥| field was used to simulate the signal evolution (intervals (2) and (3) in
The signal expression of Eq. (1) was validated by the fact that the predicted MRI signal substantially matched with that obtained from Bloch simulation. The non-linear image reconstruction results are shown in
Selective RF Pulse Validation. Next, phantom experiments were performed to validate control of flip angle, time-bandwidth product, and centering of the pulses designed in accordance with the various embodiments. |B1+|-Selective pulses were designed in MATLAB, as described above, and deployed on a 31 cm 4.7 T Varian spectrometer (Agilent, Santa Clara, Calif., USA) with a 38 mm Litz volume coil (Doty Scientific, Columbia, S.C., USA) for transmit and receive and a 50 mL, 3 cm diameter/10 cm long vial phantom containing a CuSO4 solution with T1≈200 ms. The pulses were used for excitation in a 3D gradient-recalled echo sequence with FOV 30×30×100 mm, 32×32×32 matrix size, 50 or 100 ms TR and 5 ms TE as measured from the center of the pulses. The pulses were sampled with a 4 μs dwell time, and frequency modulation was converted to phase modulation. To account for finite RF amplifier rise times, 40-sample ramps were placed on either end of the A(t) waveforms, which were paired with 20-sample rewinders with opposite sign to cancel the area of the ramps. These ramps and rewinders are visible on the waveforms in
Simulations were performed to characterize the sensitivity of |B1+|-selective pulses to off-resonance, and to compare them to BIR-4 adiabatic pulses staewen19903 in terms of off-resonance sensitivity and threshold |B1+|. A hard pulse approximation-based Bloch simulator was used, with a 2 μs dwell time for the off-resonance simulation, and a 4 μs dwell time for the BIR-4 comparison. The simulations assumed excitation of 1H, so that
In all, four |B1+|-selective pulses were simulated: two 3.1 ms TB=2 pulses at 30° and 90° and centered at 2 and 4 Gauss/8.5 and 17 kHz, with 0.3 Gauss passband width, and two 12.5 ms TB=8 pulses, for the same flip angles, profile centering and passband widths. All four designs used δ1,e=δ2,e=0.01. The two-dimensional patterns of unwanted excitation due to off-resonance appear the same for a given duration. This suggests that off-resonance sensitivity primarily depends on pulse duration and the shape of the A(t) waveform, rather than on the flip angle and profile centering, which are characteristics that determine the shape and amplitude of the ΔωRF(t) waveform. As might be expected, near |B1+|=0, the shorter 3.1 ms pulse appears to have a wider frequency bandwidth over which unwanted excitation is insignificant. Further, in all cases the unwanted excitation decays rapidly as |B1+| increases. Note that the |Mxy| patterns shown in
A 4.7 ms, TB=4 |B1+|-selective pulse was designed to excite a 45° tip angle, with a passband width of 0.4 Gauss/1.7 kHz, and ripples δ1,e=0.01 and δ2,e=0.4. The high δ2,e was used to reflect the fact that the stopband above the passband was a ‘don't-care’ region. The passband was placed as close to |B1+|=0 as possible, so direct weighted-least squares dual-band FIR filter design was used to design the β filter. Two BIR-4 pulses were then designed: one with the same 4.7 ms duration as the |B1+|-selective pulse, and one longer 5.9 ms pulse. The 4.7 ms BIR-4 pulse design used ΔωRF0=100 π/T radians/second, β=10, and κ=tan−120 staewen19903. These parameters were empirically selected to match the threshold |B1+| and passband ripple of the |B1+|-selective pulse. The 5.9 ms BIR-4 pulse design used the same ΔωRF0 and β, but its longer duration enabled use of a less-aggressive κ=tan−1 15. All pulses are plotted in
The results of
Z-Gradient Coils. While many studies have implemented RF encoding using surface coils, it is less clear how to build z-gradient RF coils. A z-gradient coil will nominally produce a large RF magnitude gradient in the z-direction, but a uniform RF magnitude field in any transverse slice along z. One option is to utilize saddle and toroidal z-gradient RF coil designs, which both use conical formers. A conical toroidal z-gradient coil 1700 in accordance with the various embodiments is illustrated in
In one particular embodiment, the former 1703 is configured to provide a cone defining the coil 1700 with a depth or height (H) of 3 cm, a smaller diameter (D1) of 3 cm and a larger diameter (D2) of 9 cm. The surface coils 1706 have diameter 24 mm. (b) With these design parameters the resulting z-gradient coil produces a monotonic |B1+| field along its z-axis. This is illustrated in
Decoupling Strategies. In some implementations, passive decoupling and filtering efforts may not sufficiently attenuate the transmit signal in the receive path during RF frequency encoding. In such cases, a transmit array decoupling method can be implemented. This method uses multiple transmit coils and channels whose relative amplitudes and phases are adjusted to achieve zero total current induced in a receive coil.
Pulse Sequence Construction. Based on the foregoing, it is then possible to construct fully RF-encoded 2D multislice and 3D gradient-recalled echo and spin echo imaging RF pulse sequences. In one exemplary implementation, these can be developed in three stages, as shown below and as illustrated in
Step 1: Phase-encoded imaging. 1D and 2D RF gradient-based phase encoding can be implemented using surface RF gradient coils. Non-RF-encoded dimensions will be resolved using B0 gradients. Three approaches can be used to increment the BS encoding phase: incrementing the pulse's duration, amplitude, and offset frequency. A best approach will minimally and consistently perturb magnetization across acquired projections, and will have minimal and consistent off-resonance sensitivity. Whereas some have used hard pulses for BS phase encoding with a large fixed frequency offset (e.g., 600 kHz) to avoid on-resonance excitation, one can use optimized frequency-swept pulses which should enable much lower frequency offsets and consequently much lower RF power levels. For example, one can target a maximum 100 kHz offset in the center of the pulses, which will reduce RF power by a factor of six compared to the hard pulse approach for the same phase gradient.
Step 2: Phase- and frequency-encoded imaging. One can then develop BS frequency encoding. As in phase encoding, the BS frequency-encoding pulses should produce a large frequency shift with minimal on-resonant excitation. But, whereas BS phase-encoding pulses need only produce minimal on-resonant excitation as evaluated at the end of the pulse, BS frequency-encoding pulses should minimally tip magnetization throughout the time period during which the scanner's receiver is switched on to sample the signal. In some cases, the critical design feature of these pulses will be the ramp up to full-scale RF amplitude, which can produce significant on-resonant excitation. By optimizing the rate of frequency sweeps of each, the ramp-up excitation can be canceled by the ramp down, while the center, constant-frequency portion of the pulses is primarily responsible for the BS phase accrual but produces little tip. Based on this, to design frequency-encoding BS pulses, one can divide the pulses into: 1) a numerically-optimized ramp-up segment; 2) a full-scale amplitude, constant frequency-offset segment, during which the ADC window is placed; and 3) a numerically-optimized ramp-down segment.
Step 3: 2D and 3D phase- and frequency-encoded imaging with RF slice-selection. The final step will be dependent on the z-gradient RF coil utilized, which will be used to perform slice- or slab-selection with our B1+-selective pulses, and to phase-encode the third dimension in 3D acquisitions. An extension of the described B1+-selective pulse design algorithm to the refocusing case could be used to design refocusing pulses for multi-slice spin echo acquisitions, or B1+-selective refocusing pulses could be designed using existing optimal control algorithms. As an example, if the described B1+-selective pulse design algorithm were used, a B1+-selective pulse that excites a 0.15 mm slice with a commonly-used time-bandwidth product of 4 will have a duration of 7.0 ms for a minimum targeted 18 Gauss/cm gradient strength from Aim 1.
Potential problems and alternative strategies. If one arrives at Step 3 before a z-gradient coil is available, one could perform 2D imaging using the two surface RF gradient coils. One for slice-selective excitation and the other for phase or frequency encoding, and using a B0 gradient for the second encoded dimension. RF phase cycling and crushing using BS phase-encoding pulses may be required to spoil the transverse magnetization left over after signal acquisition. However, the latter solution would increase the total RF power of the sequence.
Based on the foregoing, simulations were performed to investigate: (1) resolution and imaging field-of-view (FOV) relationships, signal-to-noise (SNR) sensitivity, and appearance of chemical shift artifacts. The simulations were performed using linear and non-linear reconstruction methods for M⊥ to look at the effect on encoded resolution, encoded FOV, collected data points, noise, and chemical shift artifacts. For the simulations, the linear approach is a matrix inversion reconstruction based on linearizing the signal equation assuming small Beff angle (cos θ=1). The non-linear approach is non-linear least squares fitting of the signal equation, using the fsolve( ) routine in MATLAB. Further, for the simulations, a simulated object magnitude and phase was provided, as shown in
In the following figures, the “Truth” curves are the magnitude and phase curves of
First, the effect of encoded resolution (Δx) is shown in
Second, the effect of encoded FOV is shown in
Third, the effect of the number of collected data points is shown in
Fourth, the effect of SNR is shown in
Overall, these simulation results support the theoretical predictions of Equations 1-7.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/950,433, entitled “MRI USING RF GRADIENTS FOR SPATIAL ENCODING and filed Mar. 10, 2014, the contents of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61950433 | Mar 2014 | US |