Wellbores are drilled to locate and produce hydrocarbons. A downhole drilling tool with a bit at an end thereof is advanced into the ground to form a wellbore. As the drilling tool is advanced, a drilling mud is pumped from a surface mud pit, through the drilling tool and out the drill bit to cool the drilling tool and carry away cuttings. The fluid exits the drill bit and flows back up to the surface for recirculation through the tool. The drilling mud is also used to form a mudcake to line the wellbore.
During the drilling operation, it is desirable to perform various evaluations of the formations penetrated by the wellbore. In some cases, the drilling tool may be provided with devices to test and/or sample the surrounding formation. In some cases, the drilling tool may be removed and a wireline tool may be deployed into the wellbore to test and/or sample the formation. In other cases, the drilling tool may be used to perform the testing or sampling. These samples or tests may be used, for example, to locate valuable hydrocarbons.
Formation evaluation often requires that fluid from the formation be drawn into the downhole tool for testing and/or sampling. Various fluid communication devices, such as probes, are extended from the downhole tool to establish fluid communication with the formation surrounding the wellbore and to draw fluid into the downhole tool. A typical probe is a circular element extended from the downhole tool and positioned against the sidewall of the wellbore. A rubber packer at the end of the probe is used to create a seal with the wellbore sidewall.
The mudcake lining the wellbore is often useful in assisting the probe in making the seal with the wellbore wall. Once the seal is made, fluid from the formation is drawn into the downhole tool through an inlet by lowering the pressure in the downhole tool. Some formations, however, tend to have very thick mud cakes. In such environments, existing probes do not penetrate the mudcake. That is, either the mudcake is too thick or it is of such a consistency that the probe does not pass through it. This prevents the acquisition of pressure data.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
One or more aspects of the present disclosure relate to those within the scope of U.S. Pat. No. 7,428,925, U.S. Pat. No. 5,692,565, and/or U.S. Pat. No. 4,860,581, which are each hereby incorporated by reference in their entirety.
The probe assembly 310 includes a packer 320, an inlet 325, and a filter piston 330. The packer 320 comprises an elastomeric material surrounding the inlet 325. The filter piston 330 is actuatable between an extended position (shown in
As best shown in
The taper angle A may be about 90°, as in the embodiment shown in
As also shown in
That is, in past embodiments, the filter piston (e.g., 330) has a flat surface that makes contact with the formation. However, according to one or more aspects of the present disclosure, the filter piston 400 is elongated and may have a sharp or tapered edge at its external end 402. The external end 402 may be configured to penetrate the mud cake while the probe is being set. At the end of the setting sequence, the filter piston 400 is retracted, thus opening a flowpath from the formation through the mudcake and to the probe.
For example,
Referring to
One or more aspects of the probe assembly 216 may be substantially similar to those described above in reference to the embodiments shown in
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system could alternatively be used.
In the illustrated example, the surface system further includes drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
The bottom hole assembly 100 of the illustrated embodiment a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a roto-steerable system and motor, and drill bit 105. The LWD module 120 is housed in a special type of drill collar, as is known in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, e.g., as represented at 120A. (References, throughout, to a module at the position of 120 can alternatively mean a module at the position of 120A as well.) The LWD module includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. For example, the LWD module may include a pressure measuring device that is substantially similar to or comprises the formation pressure tester tool 450 shown in
The MWD module 130 is also housed in a special type of drill collar, as is known in the art, and can contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool further includes an apparatus (not shown) for generating electrical power to the downhole system. This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. The MWD module may include one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
In view of all of the above and the figures, it should be readily apparent to those skilled in the pertinent art that the present disclosure introduces an apparatus comprising: a downhole tool configured for conveyance within a wellbore extending into a subterranean formation, the downhole tool comprising: a probe assembly comprising an inlet, a packer comprising an elastomeric material surrounding the inlet, and a filter piston actuatable between an extended position and a retracted position and having an external end, wherein: the inlet is open when the filter piston is in the retracted position; the external end substantially closes the inlet when the filter piston is in the extended position; and the filter piston protrudes from the inlet when the filter piston is in its extended position. The external end of the filter piston may have a tapered profile. The tapered profile may have a taper angle ranging between about 30° and about 120°. Alternatively, the tapered profile may have a taper angle ranging between about 70° and about 100°. In an exemplary embodiment, the tapered profile may have a taper angle of about 90°. The tapered profile may taper to a point, a rounded end, or a blunt end. The external end of the filter piston may comprise one or more flats configured for engagement with a tool utilized to assemble the filter piston to the probe assembly. The external end of the filter piston may be configured to expel filtered particulate from the inlet when translating from the retracted position to the extended position. The probe assembly may further comprise an actuator configured to translate the filter piston within the inlet between the extended position and the retracted position. The probe assembly may be configured to measure pressure of the formation surrounding the wellbore when the probe assembly is positioned in engagement with a wall of the wellbore. The probe assembly may be extendable from the downhole tool for sealing engagement with a mudcake or wall of the wellbore. The probe assembly may be extendable from the downhole tool via hydraulic, mechanical, electrical, or electromechanical actuation. The downhole tool may further comprise a controller and circuitry coupling pressure-representative signals from the probe assembly to the controller. The downhole tool may further comprise telemetry circuitry coupled to the controller. The downhole tool may be configured for conveyance within the wellbore via wireline or drill string.
The present disclosure also introduces a method comprising: positioning a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: a probe assembly comprising an inlet, a packer comprising an elastomeric material surrounding the inlet, and a filter piston actuatable between an extended position and a retracted position and having an external end, wherein: the inlet is open when the filter piston is in the retracted position; the external end substantially closes the inlet when the filter piston is in the extended position; and the filter piston protrudes from the inlet when the filter piston is in its extended position; engaging the probe assembly with a wall of the wellbore, such that the inlet is positioned proximate a mudcake lining the wellbore wall; translating the filter piston from the retracted position towards the extended position, such that the external end of the filter piston extends beyond the inlet to a point embedded within the mudcake. Engaging the probe assembly with the wall of the wellbore may cause the inlet to protrude into the mudcake. Translating the filter piston may cause the external end of the filter piston to extend beyond the mudcake and into the formation. The method may further comprise retracting the filter piston to within the probe assembly, thus exposing the inlet to the formation through an opening created by translation of the filter piston. The opening may comprise a flowpath from the formation through the mudcake and to the probe assembly. The method may further comprise conveying the downhole tool within the wellbore via wireline or drill string.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/146,720, filed Jan. 23, 2009, entitled “MUD CAKE PROBE EXTENSION,” the entirety of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61146720 | Jan 2009 | US |