This application relates to subsurface drilling, specifically to mud motors. Embodiments are applicable to drilling wells for recovering hydrocarbons.
Recovering hydrocarbons from subterranean zones typically involves drilling wellbores.
Wellbores are made using surface-located drilling equipment which drives a drill string that eventually extends from the surface equipment to the formation or subterranean zone of interest. The drill string can extend thousands of feet or meters below the surface. The terminal end of the drill string includes a drill bit for drilling (or extending) the wellbore. Drilling fluid, usually in the form of a drilling “mud”, is typically pumped through the drill string. The drilling fluid cools and lubricates the drill bit and also carries cuttings back to the surface.
Bottom hole assembly (BHA) is the name given to the equipment at the terminal end of a drill string. In addition to a drill bit, a BHA may comprise elements such as: apparatus for steering the direction of the drilling; sensors for measuring properties of the surrounding geological formations (e.g. sensors for use in well logging); sensors for measuring downhole conditions as drilling progresses; one or more systems for telemetry of data to the surface; stabilizers; heavy weight drill collars; pulsers; and the like. The BHA is typically advanced into the wellbore by a string of metallic tubulars (drill pipe).
Instead of driving a drill bit by rotating the entire drill string from the surface a drill bit may be driven by a mud motor. A mud motor is driven by the flow of drilling fluid through the drill string. Mud motors must work in harsh downhole environments. WO 2010/106335 describes a drill motor equipped with stabilizer blades that carry reaming blocks of diamond-impregnated tungsten carbide material along longitudinal edges of the blades.
As drilling progresses, especially where the formation being drilled is very hard, the drill bit can wear. The diameter of the wellbore being drilled may be reduced as the drill bit becomes worn. Reamer tools may be subsequently used to expand the wellbore to a required diameter. Reamer tools may be connected at various locations in the drill string. For example, U.S. Pat. No. 7,562,725 describes a reamer located between a mud motor and a drill bit.
Other references describing reamers of various types for downhole applications include: CA 2756010; US 2004/0099444; US 2006/0207796; US 2006/0237234; US 2010/0096189; US 2010/0326731; US 2011/0240370; US 2012/0279784; US 2013/0092444; U.S. Pat. No. 6,470,977; U.S. Pat. No. 6,848,518; U.S. Pat. No. 5,649,603; U.S. Pat. No. 4,480,704; WO 2010/151796; and, WO 2013/052554.
There remains a need for alternative tools and methods for subsurface drilling.
This invention provides mud motors having integrated rotary reamers. The reamers may assist in sizing a wellbore to a desired size and/or stabilizing a drill bit and/or reducing a roughness of the wall of a wellbore. Such reamers can assist in providing a smoother wellbore that assists in sliding of a drill string while directional drilling. Providing reaming elements on the outer surface of a mud motor can provide stabilization close to a drill bit while allowing the drill bit to be mounted close to the mud motor. Such reaming elements can also provide reaming of the entire well bore as a drill string is tripped out of the wellbore.
One aspect of the invention provides a mud motor useable for downhole drilling. The mud motor comprises a body having a coupling at a downhole end thereof for coupling to a drill bit; and a plurality of reamer elements rotatably mounted on an outer surface of the body. In some embodiments the reamer elements of the plurality of reamer elements are each mounted in a corresponding pocket in the outer surface of the body and each project radially outwardly from the corresponding pocket. The reamer elements of the plurality of reamer elements may be each supported for rotation on a shaft extending across the corresponding pocket.
In some embodiments the plurality of reamer elements include a group of three or more reamer elements spaced apart from one another around a circumference of the body. The reamer elements in the group of reamer elements may be uniformly spaced apart around the circumference of the body. Radially outermost points of the reamer elements in the group of reamer elements may lie on a circle centered on a longitudinal centerline of the mud motor. A drill bit may be coupled to the coupling. In some embodiments the drill bit has an outer diameter equal to a diameter of the circle (i.e. the reamer elements are arranged to ream the borehole to a size equal to a gauge diameter of the drill bit).
The rotary reamer elements may have various forms. In some embodiments the reamer elements comprise roller reamer cutters. The roller reamer cutters may be inserted with hard materials such as tungsten carbide, diamond-containing bodies, or the like.
In some embodiments the reamer elements of the plurality of reamer elements are mounted to rotate about parallel axes. The parallel axes may be parallel to a longitudinal centerline of the mud motor. In some other embodiments the reamer elements of the plurality of reamer elements are mounted to rotate about axes that are skewed with respect of a longitudinal centerline of the mud motor. In other embodiments different ones of the reamer elements are mounted to rotate about axes oriented in different directions.
In some embodiments the mud motor comprises a rotor running within a stator and the plurality of reamer elements are directly radially outward of the rotor.
In some embodiments the outer surface of the body comprises a tubular member removably affixed to the mud motor.
Another aspect of the invention provides a downhole mud motor comprising a body having coupling at a downhole end thereof for coupling a drill bit; and a plurality of pockets formed on an outer surface of the body. Each of the plurality of pockets is adapted to receive a shaft that extends across the corresponding pocket. In some embodiments, a reamer element is rotatably mounted on the shaft received in each of the plurality of pockets. Each of the reamer elements projects radially outward from the corresponding pocket of the plurality of pockets.
In some embodiments the plurality of pockets include a group of three or more pockets spaced apart from one another around a circumference of the body. The group of pockets may be uniformly spaced apart the circumference of the body. Radially outermost points of the reamer element in each of the plurality of pockets may lie on a circle centered on a longitudinal centerline of the mud motor. A drill bit may be coupled to the coupling. In some embodiments, the drill bit has an outer diameter equal to a diameter of the circle.
In some embodiments the reamer element may comprise roller reamer cutters. The roller reamer cutters may be inserted with hard material such as tungsten carbide, diamond-containing bodies, or the like.
In some embodiments each of the shafts, received in the corresponding pocket of the plurality of pockets, lies on parallel axes. The parallel axes may be parallel to a longitudinal centerline of the mud motor. In some embodiments the parallel axes may be skewed with respect to the longitudinal centerline of the downhole mud motor.
In some embodiments the body comprises a stator of the mud motor and the outer surface of the body comprises a tubular member removably affixed to the stator. The downhole mud motor may further comprise a rotor running within the stator. The plurality of pockets may be formed in an outer surface of the tubular member. In other embodiments the body comprises a plurality of tubular members removable affixed to the downhole mud motor, where the plurality of pockets are formed in outer surfaces of the plurality of tubular members.
Another aspect provides a reamer device comprising a reamer body carrying one or more radially-outwardly-facing reamer surfaces. The reamer body has a bore extending therethrough. The bore comprises first and second inner surfaces respectively dimensioned to receive first and second drill string sections. A radially-inwardly-projecting member is located within the bore between the first and second inner surfaces.
The reamer device may be assembled onto a joint between the first and second drill string sections. The first drill string section comprises a first coupling element engaged to a second coupling element of the second drill string section to provide a gap at the joint. The gap may comprise, for example, a circumferential groove at the joint, one or more pockets formed at the joint between the first and second drill string sections or the like The radially-inwardly-projecting member of the reamer device projects into the gap.
In some embodiments, at least one of the first and second drill string sections comprises a drill collar or a mud motor. In some embodiments the reamer device has internal threads engaging external threads on the drill collar or mud motor.
Further aspects of the invention and features of example embodiments are illustrated in the accompanying drawings and/or described in the following description.
The accompanying drawings illustrate non-limiting example embodiments of the invention.
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. The following description of examples of the technology is not intended to be exhaustive or to limit the system to the precise forms of any example embodiment. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
A rotatable coupling 26 is provided at a downhole end 21B of mud motor 20. A drill bit 27 may be coupled to rotatable coupling 26. Mud motor 20 comprises a rotor inside body 22 (rotor not shown in
A plurality of reamer mechanisms 30 are mounted on the outside surface 28 of body 22 between ends 21A and 21B, see
Reamer element 32 may have a reduced diameter at either end. The specific shape of reamer element 32 may be varied widely. For example, in longitudinal cross-section the surface of reamer element 32 may follow an arc of a circle, an ellipse, a trapezoid, be generally pine-cone shaped etc.
Reamer element 32 is mounted for rotation on a shaft 35 that extends across a pocket 36 in outside surface 28 of body 22. The part of reamer element 32 that is radially outermost relative to the longitudinal centerline of mud motor 20 projects radially outwardly from outside surface 28.
As shown in
In some embodiments, the group of reamer mechanisms 30 spaced apart around circle 40 comprises three to seven reamer mechanisms with three to five reamer mechanisms being most practical for many applications. One illustrative embodiment has three reamer mechanisms. Another illustrative embodiment has six reamer mechanisms spaced circumferentially around the circumference of mud motor 20. Three reamer mechanisms are shown spaced equally apart around circle 40 in
Providing a plurality of groups of reamer mechanisms 30 spaced apart along mud motor 20 may prevent flexing of mud motor 20. This can be advantageous because flexing can cause wear and damage to a mud motor. In some applications, however, flexing is desired. In certain directional drilling applications, for example, it can be desirable to allow the stator of a mud motor to flex. For use in such applications, some reamer mechanisms 30 may be dismounted. For example, a mud motor for certain directional drilling operations may be used with only one group of reamer mechanisms 30 located close to the end of mud motor 20 at which drill bit 27 is coupled.
The axes of rotation of reamer elements 32 may be, but are not necessarily parallel to one another. In some embodiments the axes of rotation of some or all reamer elements 32 are parallel to longitudinal centerline 42 of mud motor 20. In some embodiments, the axes of rotation of some or all reamer elements 32 are skewed relative to the longitudinal centerline of mud motor 20.
In some embodiments the reamer elements are mounted at a skew angle that matches a typical helix angle followed during drilling. For example, the appropriate skew angle is given approximately by θ=sin−1 (P/πDS), where P is the penetration rate, D is the diameter of the wellbore after reaming, and S is the rotation rate. In a case where the drill bit is rotated at 50 RPM with a penetration rate of 10 m/minute and the borehole is 30 cm in diameter, this gives a skew angle of approximately 13 degrees.
The dimensions of reamer elements 32 may be varied. It is not mandatory that all of reamer elements 32 be the same size. In an example embodiment, reamer elements 32 are approximately 2 inches (about 5 cm) in diameter. In an example embodiment, reamer elements 32 are approximately 6 inches long. The dimensions of reamer elements 32 should be selected taking into consideration the diameter of mud motor 20 as well as the cross sectional area desired for the flow of drilling fluid in the annular region outside of mud motor 20.
In some embodiments longitudinal or helical grooves or channels are cut into outer surface 28 of mud motor 20 Such grooves or channels provide increased area for the flow of drilling fluid past mud motor 20.
Reamer mechanisms 30 are preferably constructed to permit replacement of reamer elements 32.
In some embodiments, reamer mechanisms 30 are mounted on a component that is removable from the stator of mud motor 20. The component may, for example, comprise a tubular sleeve clamped or otherwise attached to the stator. The component may have substantially the same length as the stator or it may have a length less than the length of the stator. The component may be coupled to either the downhole or uphole end of the stator or it may be coupled to both. The component may include grooves, holes, or the like to provide paths for the flow of drilling fluid past the component. Such fluid flow paths can provide decreased restriction to fluid flow.
In some embodiments, different tubular sleeves 50 having different arrangements of reamer mechanisms 30 may be provided for use with the same mud motor 44. For example, the different sleeves 50 may support mud motor 44 to different degrees against flexing. One tubular sleeve 50 may have reamer mechanisms 30 located near one end only while another tubular sleeve 50 may have several groups of reamer mechanisms 30 spaced longitudinally along it, see
As another example embodiment, different groups of reamer mechanisms 30 may be mounted on separate tubular sleeve sections. As reamer elements 32 wear, the tubular sleeve sections may be loosened, the tubular sleeve section carrying the most-worn reamer elements 32 may be removed, the other tubular sleeve sections may be slid along mud motor 44 and a tubular sleeve section carrying fresh reamer elements 32 may be installed in the resulting space.
One advantage of certain of the embodiments described herein is that providing rotary reamers on a mud motor can simultaneously stabilize the mud motor and ream the borehole to provide a smooth-walled on-size borehole as drilling progresses. Providing a reamed borehole can reduce sliding friction of the drill string.
As shown in
As shown in
In the illustrated embodiment a first section 72 carrying a female coupling 73 is coupled to a second section 74 carrying a male coupling 75. When female coupling 73 and male coupling 74 are connected together, a gap 76 is left between the end of first section 72 and a shoulder 77 on second section 74. Reamer element 60 has an inwardly-projecting member 78 that engages in gap 76 to hold reamer device 60 in place. In the illustrated embodiment, gap 76 is circumferential and member 78 comprises an inwardly-projecting flange but this is not mandatory. Where gap 76 is circumferential, reamer device 60 may be free to rotate relative to the coupled sections 72, 74.
Bore 70 of reamer device 60 has inner surfaces 80A and 80B dimensioned to bear against corresponding outer surfaces 81A and 81B on first and second sections 72, 74. The engagement between at least one of sections 80A and 80B with the corresponding section 81A or 81B assists in keeping reamer device 60 stabilized and concentric with the drill string.
Reamer device 60 may optionally be attached to sections 72, 74 in a way that prevents or limits rotation. For example, reamer device 60 may be threaded in section 80A or section 80B and the corresponding section 81A or 81B may also be threaded (e.g. provided with external threads) such that reamer device 60 may be threadedly coupled to one of sections 71, 72 and then the other of sections 72, 74 may be introduced through bore 70 and couplings 73 and 75 coupled together. Other non-limiting constructions to prevent or limit rotation of reamer device 60 relative to sections 72, 74 include suitable pins, bolts, clamps, etc.
In some embodiments a mud motor comprises two or more sections coupled together by engaging couplings as shown, for example, in
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
Unless the context clearly requires otherwise, throughout the description and the claims:
Words that indicate directions such as “vertical”, “transverse”, “horizontal”, “upward”, “downward”, “forward”, “backward”, “inward”, “outward”, “vertical”, “transverse”, “left”, “right”, “front”, “back”, “top”, “bottom”, “below”, “above”, “under”, and the like, used in this description and any accompanying claims (where present) depend on the specific orientation of the apparatus described and illustrated. The subject matter described herein may assume various alternative orientations. Accordingly, these directional terms are not strictly defined and should not be interpreted narrowly.
Where a component (e.g. a circuit, module, assembly, device, drill string component, drill rig system, etc.) is referred to above, unless otherwise indicated, reference to that component (including a reference to a “means”) should be interpreted as including as equivalents of that component any component which performs the function of the described component (i.e., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated exemplary embodiments of the invention.
Specific examples of systems, methods and apparatus have been described herein for purposes of illustration. These are only examples. The technology provided herein can be applied to systems other than the example systems described above. Many alterations, modifications, additions, omissions and permutations are possible within the practice of this invention. This invention includes variations on described embodiments that would be apparent to the skilled addressee, including variations obtained by: replacing features, elements and/or acts with equivalent features, elements and/or acts; mixing and matching of features, elements and/or acts from different embodiments; combining features, elements and/or acts from embodiments as described herein with features, elements and/or acts of other technology; and/or omitting combining features, elements and/or acts from described embodiments.
It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions, omissions and sub-combinations as may reasonably be inferred. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
This application claims priority from U.S. Application No. 61/843,355 filed 6 Jul. 2013. For purposes of the United States, this application claims the benefit under 35 U.S.C. §119 of U.S. Application No. 61/843,355 filed 6 Jul. 2013 and entitled MUD MOTOR WITH INTEGRATED REAMER which is hereby incorporated herein by reference for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2014/050643 | 7/4/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/003267 | 1/15/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2088770 | Skinner | Aug 1937 | A |
4226291 | Spelts | Oct 1980 | A |
4385669 | Knutsen | May 1983 | A |
4480704 | May et al. | Nov 1984 | A |
4508184 | Hansen | Apr 1985 | A |
4862974 | Warren et al. | Sep 1989 | A |
5649603 | Simpson et al. | Jul 1997 | A |
6470977 | Chen et al. | Oct 2002 | B1 |
6848518 | Chen et al. | Feb 2005 | B2 |
7562725 | Broussard et al. | Jul 2009 | B1 |
20040099444 | Chen et al. | May 2004 | A1 |
20060207796 | Stewart | Sep 2006 | A1 |
20060237234 | Dennis et al. | Oct 2006 | A1 |
20100096189 | Salzer, III et al. | Apr 2010 | A1 |
20100326731 | Swietlik et al. | Dec 2010 | A1 |
20110240370 | Shwets et al. | Oct 2011 | A1 |
20120279784 | Harvey et al. | Nov 2012 | A1 |
20130092444 | Taghipour Khadrbeik | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2756010 | Sep 2010 | CA |
2010151796 | Dec 2010 | WO |
2013052554 | Apr 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20160138341 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
61843355 | Jul 2013 | US |