1. Field of Invention
The present disclosure relates to a system for creating pulses in wellbore fluid. More specifically, the present disclosure relates to a downhole telemetry system with a multi-ported valve.
2. Description of Prior Art
Information about a hydrocarbon producing formation are often obtained during operations conducted a borehole that intersects the formation. Typical wellbore operations that also involve gathering downhole information include measuring while drilling (MWD) and logging while drilling (LWD). The formation information generally includes downhole fluid pressure and/or temperature, and information about the formation, such as its resistivity, density, tool orientation and position, and porosity. The information obtained during MWD and LWD is usually communicated to surface via mud pulse telemetry in real time, where fluid flowing through a downhole string is intermittently metered in order to create pressure pulses in the fluid. During mud pulse telemetry, metering the fluid is done sequentially to generate discernible signals, represented by pressure variations in the fluid, that are thee carried by the fluid back to surface. The sensors on the surface (e.g., pressure sensors) will convert the pressure change in the mud system to electrical signals for further processing.
Some currently known mud pates use plungers or disk actuators for creating pressure pulses. The plunger type actuators blocks and released mud flow by a piston in the mud channel, and can be oriented vertically or horizontally. Disk actuators are made up of horizontally disposed disks that have axial openings. Rotating or oscillating the disks with respect to one another selectively moves the openings in and out of registration to intermittently block and allow flow across the disks, thereby introducing pressure pulses into the drilling fluid. A drawback to the use of plungers for creating mud pulses is the force required to move the plunger in and out of the way of its associated opening. The large force required to move the plungers limits the speed at which the plungers can operate, thereby limiting the data density that can be relayed uphole. Similarly, large shear forces between the rotating disks resists their respective rotational speed.
Disclosed herein are examples of a mud pulser system for use with a drilling system and methods of generating mud pulses in drilling fluid in a wellbore. One example of a mud pulsar system for use with a drilling system includes a pulser assembly disposed in a path of drilling fluid flowing through the drill string. The pulser assembly is made up of a body with an inlet, an exit, and a cavity between the inlet and exit. A rotary member is disposed in the cavity, and multiple ports formed through the rotary member. In this example, when the rotary member is selectively rotated to register an end of one of the ports with the inlet, an opposing end of the one of the ports registers with the exit, so that the drilling fluid flows between the inlet and exit and through the one of the ports; and so that when the rotary member is selectively rotated to move all of the ports out of registration with the inlet, a pressure pulse is generated in the drilling fluid. In one example the rotary member is selectively oscillated to move the one of the ports into and out of registration with the inlet. The rotary member can be axially moveable within the cavity. In an alternative, the rotary member is selectively rotatable for modulation of frequency, phase, or amplitude of the pressure pulse generated in the drilling fluid. A controller for controlling rotation of the rotary member can be included with the mud pulser system. Embodiments exist where the inlet has a square, rectangular, circular, or oval shape. The rotary member can be spherical, ovoid, or cylindrical. An actuator can further be included that is coupled to the rotary member. In one example, the ports intersect with one another proximate a mid-portion of the rotary member. The rotary member can be selectively moveable between first and second positions within the purser assembly. An elevator assembly can be included, that when selectively activated biases the rotary member into a one of the first or second positions.
Also disclosed herein is a method of generating mud pulses in a wellbore, and which includes providing a mud pulser system having a pulse assembly that is made up of a body, an upper passage in the body, a cavity in the body intersected by the upper passage, a lower passage in the body that intersects a portion of the cavity distal from the upper passage, and a rotatable member in the cavity having an outer surface and multiple ports that each have distal ends intersecting the outer surface at substantially diametrically opposed locations. The method further includes disposing the mud pulser system in a wellbore, providing a supply of drilling fluid to an end of the upper passage distal from the cavity, and generating pulses in the drilling fluid by rotating the rotatable member so that the ports selectively move into registration with both the upper and lower passages thereby providing fluid communication through the pulser assembly for discrete periods of time. A single rotation of the rotatable member can generate four pulses in the drilling fluid. The method can further include removing debris accumulated within the axially moving the rotatable member within the cavity, as well as optionally modulating one or more of a frequency, phase, or amplitude of the generated pulses. The poises, can represent data, so that by monitoring the pulses in the drilling fluid, the data represented by the pulses is identified.
A drilling system is disclosed herein that includes a drill string having an annulus in communication with a supply of drilling fluid, a bottom hole assembly mounted to an end of the drill string, a flow path in the bottom hole assembly in communication with the annulus in the drill string, so that when drilling fluid is directed through the drill string, the drilling fluid flows into the flow path. This example of the drilling system also includes a pulser assembly disposed in the flow path, and that is made up of a body with an inlet, an exit, and a cavity between the inlet and exit, a rotary member disposed in the cavity, and multiple ports formed through the rotary member. In an embodiment, selectively rotating the rotary member registers an end of one of the ports with the inlet and registers an opposing end of the one of the ports with the exit, so that the drilling fluid flows between the inlet and exit and through the one of the ports, and so that when the rotary member is selectively rotated to move all of the ports out of registration with the inlet, a pressure pulse is generated in the drilling fluid. In one example, rotating the rotary member while drilling fluid is flowing through the pulser assembly generates a pressure pulse in the drilling fluid, and wherein the pressure pulse is monitored. The drilling system may optionally further include a processor for controlling rotation of the rotary member, so that the rotation of the rotary member is controlled to generate pressure pulses in the drilling fluid, and wherein data is encoded in the pressure pulses that can be decoded at a location distal from the rotary member.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, said equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described, more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Illustrated in side sectional view in
A mud pulser system 27 is shown schematically disposed in the BHA 20 and in the flow path 26 of the BHA 20. The mud pulser system 27 includes a pulser assembly 28 that is selectively actuated to vary a pressure drop of drilling fluid flowing across the pulser assembly 28, and thereby generate pulses of pressure in the drilling fluid. In an embodiment, pressure pulses are strategically generated in the drilling fluid which represent data acquired by the sensor 23. The data, represented by the pressure pulses, can be communicated via the drilling fluid flowing uphole, and where the pulses can be detected and/or decoded at surface 29. More specifically, a controller 30 is shown that via a communication means 32, detects and/or records the pressure pulses at a wellhead 34 provided proximate an opening of the wellborn 12. Controller 30 can include a demodulator (not shown) equipped for phase demodulation, amplitude demodulation, and/or frequency demodulation for demodulating the pressure pulses monitored in the wellhead 34. In an example, information extracted from the pressure pulses is recorded by controller 30, directed by controller 30 to a site remote from the borehole 12 for analysis, or recorded by controller 30 and then conveyed to the remote site for analysis. Communication means 32 can be hard wired or wireless, and the controller 30 can be proximate to or remote from the website. In the illustrated example a blowout preventer 36 is shown mounted on wellhead 34. Optionally, a rotary table 37 is shown that is used for rotating the drill pipe 18 (and thus drill string 16). Alternatively, a top drive (not shown) can be used for rotating the drill pipe 18 instead of the rotary table 37. Further in the example of
Further in the example of
As discussed above, data recorded by the sensor 23 can be pressure encoded into the drilling fluid flowing through the pulser assembly 28A by strategically blocking or allowing flow through the pulser assembly 28A along a designated time sequence. An advantage of the rotary member 44 over other known mud pulsing systems is that each rotation of the rotary member 44 can generate four pulses. This advantages of the disclosed pulser assembly 28A over known mud pulsing include the ability to generate a greater number of pulses over time, to generate pulses that are more discrete, and to generate pulses having a shorter time length. Optionally, the rotary member 44 can be oscillated in order to increase response times. In one example of operation, the pulses generated by the pulser assembly 28A are sinusoidal pulses. In an example, an offset (not shown) is provided between the rotary member 44 and bodies 40, 42 to allow a flow of drilling fluid through the pulser assembly 28A, even when in the closed orientation. In another optional embodiments the pulser assembly 28A is axially moveable within the flow path 26 to clear debris from within that may have become deposited within the pulser assembly 28A.
Referring now to
Referring back to
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure numerous changes exist in the details of procedures for accomplishing the desired results. For example, the rotary member 44 is not limited to the two ports 52, 54 as shown, but can have number of ports projecting through the rotary member 44. Optionally, the ports can be of the same or different sixes (i.e. cross sectional area), and the cross sectional area(s) of the port(s) can vary along the length(s) or the port(s). These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application is a continuation of, and claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 62/209,173, filed Aug. 24, 2015, the full disclosure of which is hereby incorporated by reference herein in its entirety and for all purposes.
Number | Date | Country | |
---|---|---|---|
62209173 | Aug 2015 | US |