N/A
N/A
N/A
The field of invention of this valve pertains to valves and more particularly to a valve assembly of the type known as a Kelly foot valve or a mud saver valve used in the rotary system for drilling oil wells.
Conventional drilling of oil wells uses a drill string or sections of drill pipe to pump drilling mud down to a drilling bit at the bottom of the hole being drilled. The drill string also typically is rotated to provide rotary power to the drilling bit at the bottom of the hole. As the hole is progressively drilled deeper and deeper, sections of drill pipe are added to the drill string to allow continued drilling. These sections are typically 30 feet long. The wells are typically from 1000 to 20,000 feet deep. The drill string is supported in the rotary table of the rig and the upper drive section or Kelly is unscrewed. When it is unscrewed, the mud in the Kelly and the hose connecting the top of the Kelly to the other piping on the rig pours out onto the rig floor.
The pouring of the drilling mud onto the rig floor is expensive because of the cost of the mud and is dangerous to the rig crew as it makes the floor slippery.
Prior art valves have been inserted into the drill string at the foot or lower end of the Kelly with different characteristics and with different degrees of success. One solution has been to place a slim O.D. ball valve in the string which is operated manually by the crew.
Other valves have been added which operate automatically based upon bore pressure or upon throttling of the fluid across the valves. These valves and the valve of the present invention are typically installed in a sub called a Kelly Saver. The term Kelly Saver comes from the fact that the section of square pipe at the top of the drill pipe which is engaged by the rotary table to turn the drill pipe is called the Kelly. Each time 30 feet more the well is drilled, the connection at the bottom of the Kelly is unscrewed and a joint of drill pipe is added to allow further drilling. This causes high wear and reduced life on the relatively expensive Kelly. A short inexpensive section of pipe is normally added to the bottom of the Kelly to take this wear and is typically called a Kelly Saver.
Prior art valves characteristically do not allow the bore thru the valve to be opened for service access down into the string of drill pipe and then put back into service without having to disassemble the mud saver valve from the drill string to put it back together. Some of the alternatives, i.e. U.S. Pat. Nos. 3,698,411 and 3,965,980 require breaking a cap portion at the top of the valve to allow such service. U.S. Pat. No. 4,128,108 discloses a mud saver valve which requires that a pin be sheared to allow such service. U.S. Pat. No. 3,331,385 discloses a valve in which an extra part is added with special running tools to allow opening and then plugging the bore. This provides the limitations of making the hole available for servicing smaller, adding extra parts, and not allowing the critical wear surfaces to be retrieved easily for inspection and/or replacement.
A second problem associated with prior art valves is that of allowing any pressure build-up below the mud saver valve to be sensed by pressure gages above the mud saver valve. This might occur when the mud is not being pumped. If unstable well conditions exist in which a blowout threatens, watching the pressure in the drill pipe above this valve is critical in the process of knowing how to control the well. Typical prior art valves such as those listed above included added components to act as check valves to allow flow in the direction going up the well.
Prior art valve U.S. Pat. No. 4,899,837 provides a similar construction the present invention, however, when flow is reduced, it will prematurely start to close adding throttling wear to the internal components.
The object of the present invention is to provide a mud valve assembly including a valve means which seals against a piston and prevents flow out of the Kelly portion of the drill pipe string above the rotary table or working level on a rotary drilling oil rig under the low head pressures associated with unscrewing the drill pipe at the rotary table or working lever, will cause the piston to move down and allow free flow under the higher pressures and flow rates which normally exist under drilling conditions, and will provide a magnetic latching of the valve in the open position to reduce the flow rate at which the valve tends to close.
Referring now to
A tapered shoulder 16 is in the upper end of the Kelly Saver 11 for supporting the mud saver valve 10. The bore 17 of the Kelly Saver 11 is the normal thru bore which would exist in a sub of this type, and the bore 18 is an enlarged bore in the Kelly Saver machined out to accommodate the mud saver valve assembly 10.
Mud saver valve 10 comprises tubular body 30, spring 32, piston 34, valve 36 and stop body 38.
Referring now to
Referring now to
Piston 34 includes a long straight portion 70 and an enlarged portion 72. The bore 74 of the piston 34 preferably matches the bore 17 of the Kelly Saver 11. Piston 34 further provides a seal surface 76, an upper shoulder 78, a first tapered surface 80, and a second tapered surface 82 which will also be called the first seal surface 82.
Spring 32 fits into the cavity 92 between the tubular body 30 and the piston 34 and pushes up against shoulder 94 on the piston 34 and reacts against the shoulder 62 on the tubular body 30. The cavity 92 is a sealed cavity with the difference in the areas of the seal bore 60 and the reduced bore 64 acting as a piston area 77 subjected to the pressures within the drill pipe. Under sufficient pressure, this piston area 77 will cause the piston to move against the spring loading and move down until a stop is encountered. In the case of the preferred embodiment, the spring 32 is made of a square wire and stops the movement of the piston 34 when it reaches stack height. In the present closed position, the square wire spring 32 has the individual coils separated by a gap 98 as would be expected in any spring which has not been compressed to stack height.
Stop body 38 provides a male thread 100 to engage the female thread 58 of the tubular body 30, a lower tapered shoulder 102, an upper tapered shoulder 104, and internal profile 106 and an internal shoulder 108. The lowered tapered shoulder 102 is engaged by the upper shoulder 78 (
Valve 36 provides retrieval profile 110, arms 44, outer ring 42, shoulder 112, a first tapered surface 114, and a second tapered surface 116 which will also be referred to as second sealing surface 116. Second seal surface 116 is contacting and sealing against seal surface 82 in the position as shown. In this case sealing refers to preventing of substantial flow and is not intended to require “drop tight” sealing. It is relevant to notice that when the connection 15 (
As pressure is increased from the top, the combination of the valve 36 and the piston 36 will move down until the gap between the shoulders 104 and 112 is closed. At that time the valve 36 is prevented from moving down further. Additional pressure will cause the piston 34 to move down against the spring force and therefore cause a separation in the seal surfaces 82 and 116. As the combination of pressure and flow increase, the piston 34 will be moved fully down to its lower position and the valve will be fully open.
Referring now to
Arrow 120 is shown going thru the flow areas 46 and 48 between the arms 44 (
The force of the flow plus the pressure against the piston area at the top of the piston 34 keep the piston in the fully opened position. When these forces diminish below a minimum level, the piston will return to the position as shown in the
Referring now to
The valve 36 will stay in this slightly elevated position as long as flow exists from the drill string. This is essential so that the drilling personnel on the rig floor can monitor the pressures within the well when the pumps are not pumping as in normal drilling.
In like manner the valve 36 can be simply retrieved from the bore by tools readily available on the drilling rigs which will engage the retrieval profile 110.
The foregoing disclosure and description of this invention are illustrative and explanatory thereof, and various changes in the size, shape, and materials, as well as the details of the illustrated construction may be made without departing from the spirit of the invention.