This application claims the benefit of priority under 35 U.S.C. ยง 119 of German Application 10 2015 118 573.3 filed Oct. 30, 2015, the entire contents of which are incorporated herein by reference.
The present invention pertains to a muffler for an exhaust system of an internal combustion engine.
Such a muffler generally comprises a housing having a circumferential wall. A resonator chamber defined by two base walls is provided in the interior of the housing enclosed by the circumferential wall for improving the muffling properties. In their outer circumferential area, the two base walls may be connected to the circumferential wall, and preferably without interruptions. The resonator chamber is open toward other volume areas of the housing interior only via a resonator pipe which traverses one of the base walls or which is connected to an opening in this base wall. It is possible to tune the muffling characteristic of a muffler having this configuration to a defined frequency or to a defined frequency range especially by setting the length of such a resonator pipe, which is also generally called a Helmholtz resonator pipe.
An object of the present invention is to provide a muffler for an exhaust system of an internal combustion engine, which, having a simple and stable configuration, has a muffling characteristic that is good and can easily be tuned to defined frequencies or frequency ranges.
According to the present invention, this object is accomplished by a muffler for an exhaust system of an internal combustion engine, comprising a housing with a circumferential wall, wherein at least one resonator chamber defined by the circumferential wall and two base walls is provided in the housing, further comprising at least one resonator pipe with a first pipe end and with a second pipe end, wherein the resonator pipe is connected to the one base wall in the area of a first opening in one of the base walls or/and the one base wall traverses such that the first pipe end lies outside of the resonator chamber, the second pipe end being fixed to the other base wall.
In the configuration according to the present invention, the resonator pipe with the resonator pipe second pipe end lying in the resonator chamber is fixed to a base wall defining this resonator chamber. It is thus possible to also mount a resonator pipe having a correspondingly long configuration and projecting comparatively far into the resonator chamber, i.e., due to the tuning to a defined frequency both in a stable manner and against vibration excitations.
The second pipe end is preferably in flush contact with the other base wall, or/and a bulge formed on the other base wall meshes with the resonator pipe at the second pipe end. The resonator pipe may be fixed to the other base wall by material connection, for example, by welding.
In order to achieve the defined muffling characteristic including the functionality of a Helmholtz resonator, on the one hand, and to be able to ensure the stable mounting mentioned above, on the other hand, it is suggested that the resonator pipe starting from the first pipe end comprise a first resonator pipe section with a pipe wall without openings and starting from the second pipe end comprise a second resonator pipe section connected to the first resonator pipe section, the resonator pipe being open toward the resonator chamber in the area of the second resonator pipe section. The first pipe section, in which the pipe wall of the resonator pipe has no openings, essentially defines the length of action of the resonator pipe relevant for the muffling characteristic, while the second resonator pipe section open toward the resonator chamber essentially does not have an effect on the acoustic characteristic and is primarily used for the stable mounting of the resonator pipe on the other base wall. It is thus ensured that the resonator pipe is firmly supported on the one base wall, on the one hand, namely in the area of the first opening of same, and is firmly supported on the other wall, on the other hand, namely with its second resonator pipe section.
The resonator pipe may have at least one opening, preferably a plurality of openings in the second resonator pipe section. These openings may have a wide variety of configurations. The resonator pipe in its second resonator pipe section may, for example, have a plurality of holes, configured, for example, with a circular cross section such that the second resonator pipe section is an essentially perforated pipe section. As an alternative or in addition, provisions may be made for at least one elongated opening, preferably a plurality of elongated openings to be provided in the second resonator pipe section. At least one elongated opening may be elongated, for example, essentially in a longitudinal direction of the resonator chamber and may possibly be open toward the second pipe end. The second resonator pipe section may thus be formed, for example, with a plurality of web-like wall sections providing connection to the other base wall and interrupted by slot-like openings. The second resonator pipe section may be configured in an alternative embodiment, for example, with a circumferential area of the pipe wall and is thus open toward the resonator chamber via this remaining circumferential area or the end area of the first resonator pipe section.
In order to be able to discharge exhaust gases from the housing interior, it is suggested that at least one exhaust gas outlet pipe be connected to the one base wall in the area of a second opening in the one base wall and connected to the other base wall in the area of a third opening in the other base wall.
The one base wall, i.e. that base wall, on which the resonator pipe is preferably firmly supported in the area of its first resonator pipe section traversing the first opening or connected thereto, may be, for example, an inner base wall separating the resonator chamber from an exhaust gas-carrying chamber. The other base wall may be an outer base wall closing the housing to the outside, via which the exhaust gases leaving the muffler are discharged, for example, through the exhaust gas outlet pipe.
An exhaust gas inlet pipe leading into the exhaust gas-carrying chamber may be provided for introducing the exhaust gases into the muffler. Further, the first pipe end of the resonator pipe may lie in the exhaust gas-carrying chamber such that an acoustic connection between the exhaust gas-carrying chamber and the resonator chamber is established via the resonator pipe.
The present invention pertains, further, to an exhaust system for an internal combustion engine with a muffler according to the present invention.
The present invention is described in detail below with reference to the attached figures. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings, an exhaust system for the internal combustion engine of a motor vehicle is generally designated by 10 in
Two inner base walls 26, 28, which are rigidly connected to the circumferential wall, for example, by welding and which are arranged spaced apart from one another and also spaced apart from the outer base walls 20, 22 and preferably also over their entire circumference, are provided between the two outer base walls 20, 22. An exhaust gas inlet pipe 30 is rigidly connected to the outer base wall 20, for example, by welding in the area of an inlet opening 32 provided in the outer base wall 20 and may be rigidly connected to the exhaust gas-carrying pipe 13, for example, by welding or by gastight insertion connection for the integration of the muffler 12 into the exhaust system 10. The exhaust gas inlet pipe 30 traverses an opening 34 in the inner base wall 26 and extends up to the inner base wall 28. A bulge 36, which may extend into the end area of the exhaust gas inlet pipe 30, may be provided on the inner base wall 28 in order to provide a defined positioning and a secure mounting for the exhaust inlet pipe 30. This exhaust inlet pipe may be connected by material connection, for example, by welding to the inner base wall 28 in this area.
An exhaust gas-carrying chamber, which is generally designated by 38, into which the exhaust gases fed via the exhaust gas inlet pipe 30 can enter through a plurality of holes 40 provided in the exhaust gas inlet pipe 30 especially in the area between the two inner base walls 26, 28, is formed between the outer base wall 20 and the inner base wall 28.
An exhaust gas outlet pipe 42 is gastightly connected to the inner base wall 28, for example, by welding in the area of an opening 44 and in the area of an opening 46 in the outer base wall 22 is gastightly connected to same, for example, by welding. The exhaust gas outlet pipe 42 may extend slightly beyond the outer base wall 22 and may be or become gastightly connected to the tail pipe 14 in this area, for example, by welding or/and insertion connection. The exhaust gas outlet pipe 42 traverses, in a gastight manner, a resonator chamber 48 formed between the inner base wall 28 and the outer base wall 22 and establishes a connection between the exhaust gas-carrying chamber 38 and the tail pipe 14 and thus the external environment.
A resonator pipe 50, which is generally designated as a Helmholtz resonator pipe, is rigidly and gastightly connected to the inner base wall 28, for example, by welding in the area of an opening 52. As this can be clearly seen in
The resonator pipe 50 extends through the resonator chamber 48 and with a second pipe end 56 is in flush contact with the inner side of the outer base wall 22. A bulge 58, which is directed inwards, i.e., toward the interior 24 in the outer base wall 22, as this is shown in
Starting from the first pipe end 54, the resonator pipe 50 has a first resonator pipe section 60, in which a pipe wall 62 of the resonator pipe 50 has no openings. The first pipe section 60 is that section of the resonator pipe, which defines the acoustic action thereof Starting from the second pipe end 56, the resonator pipe 50 has a second resonator pipe section 64, which extends up to the first resonator pipe section 60, i.e., is connected to same, and in which a plurality of openings 66 are formed in the example shown. In the example shown in
The second resonator pipe section 64 is used essentially or primarily for connecting and supporting the resonator pipe 50 to/on the housing 16, especially the outer base wall 22, and is acoustically essentially not active due to the plurality of openings 66 and holes 68. However, providing the second resonator pipe section 64 makes it possible to configure the resonator pipe 50 with a comparatively long first resonator pipe section 60 extending in the area of the resonator chamber 48 and extending from the exhaust gas-carrying chamber 38 into the resonator chamber 48 and at the same time to avoid the occurrence of oscillations of the resonator pipe 50 caused by vibrations. This stable connection of the resonator pipe 50 is achieved in a structurally simple manner and avoids the need to have to provide a lateral support, for example, on the outlet pipe 42.
A variant of the muffler 12 is shown in
Another variant is shown in
Also in the exemplary embodiments shown in
It should be pointed out that in the scope of the present invention, a wide variety of structural variations of the muffler described above and shown in the figures can be provided. Thus, the first pipe end 51 of the resonator pipe 50 does not necessarily have to be positioned in the interior of the exhaust gas inlet pipe 30. A positioning laterally next to the exhaust gas inlet pipe, especially also in an area outside of the bulge 36, is possible. Furthermore, the resonator chamber 48, which is essentially only open toward the exhaust gas-carrying chamber 38 via the resonator pipe 50, may also be formed between two inner base walls, through which the outlet pipe 42 can discharge the exhaust gases from the interior 24 of the housing 16. Further, two exhaust gas outlet pipes 42, which are adjacent and discharge exhaust gases from the interior 42, may be provided. As an alternative, provisions could also be made for an exhaust gas-carrying pipe or an additional exhaust gas-carrying pipe to lead out of the volume area of the interior 24 formed between the inner base wall 26 and the outer base wall 20, so that, for example, an exhaust gas outlet pipe discharges exhaust gases from the interior 24 in the area of the two outer base walls 20, 22, respectively.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 118 573 | Oct 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2928492 | Nelson | Mar 1960 | A |
4064962 | Hunt | Dec 1977 | A |
4192403 | Nakagawa | Mar 1980 | A |
4867768 | Wagner | Sep 1989 | A |
5025890 | Hisashige | Jun 1991 | A |
5048287 | Howe | Sep 1991 | A |
6102154 | Liu | Aug 2000 | A |
20020033304 | Watanabe | Mar 2002 | A1 |
20050126850 | Yamaguchi | Jun 2005 | A1 |
20090145689 | Han | Jun 2009 | A1 |
20100307865 | Olsen | Dec 2010 | A1 |
20120168245 | Wakatsuki | Jul 2012 | A1 |
20160281559 | Gommans | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
82 03 483 | Sep 1982 | DE |
34 17 131 | Nov 1985 | DE |
2 367 094 | Mar 2002 | GB |
S60 175718 | Sep 1985 | JP |
S62 121818 | Jun 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20170122154 A1 | May 2017 | US |