Mulling device and method for treating bulk material released from portable containers

Information

  • Patent Grant
  • 11192074
  • Patent Number
    11,192,074
  • Date Filed
    Tuesday, March 15, 2016
    8 years ago
  • Date Issued
    Tuesday, December 7, 2021
    3 years ago
Abstract
In accordance with presently disclosed embodiments, systems and methods for efficiently managing bulk material are provided. The disclosure is directed to systems and methods for efficiently combining additives into bulk material being transferred about a job site. The systems may include a support structure used to receive one or more portable containers of bulk material, and a mulling device disposed beneath the support structure to provide bulk material treatment capabilities. Specifically, the mulling device may facilitate mixing of coatings or other additives with bulk material that is released from the portable containers, as well as transfer of the mixture to an outlet location.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a U.S. National Stage Application of International Application No. PCT/US2016/022489 filed Mar. 15, 2016, which is incorporated herein by reference in its entirety for all purposes.


TECHNICAL FIELD

The present disclosure relates generally to transferring and treating dry bulk materials and, more particularly, to a mulling device for treating bulk material released from portable containers.


BACKGROUND

During the drilling and completion of oil and gas wells, various wellbore treating fluids are used for a number of purposes. For example, high viscosity gels are used to create fractures in oil and gas bearing formations to increase production. High viscosity and high density gels are also used to maintain positive hydrostatic pressure in the well while limiting flow of well fluids into earth formations during installation of completion equipment. High viscosity fluids are used to flow sand into wells during gravel packing operations. The high viscosity fluids are normally produced by mixing dry powder and/or granular materials and agents with water at the well site as they are needed for the particular treatment. Systems for metering and mixing the various materials are normally portable, e.g., skid- or truck-mounted, since they are needed for only short periods of time at a well site.


The powder or granular treating material is normally transported to a well site in a commercial or common carrier tank truck. Once the tank truck and mixing system are at the well site, the dry powder material (bulk material) must be transferred or conveyed from the tank truck into a supply tank for metering into a blender as needed. The bulk material is usually transferred from the tank truck pneumatically. More specifically, the bulk material is blown pneumatically from the tank truck into an on-location storage/delivery system (e.g., silo). The storage/delivery system may then deliver the bulk material onto a conveyor or into a hopper, which meters the bulk material through a chute into a blender tub.


Recent developments in bulk material handling operations involve the use of portable containers for transporting dry material about a well location. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the well site when the material is needed. The containers are generally easier to manipulate on location than a large supply tank trailer. For certain wellbore treatments, it can be desirable to pre-mix additives (e.g., coatings, liquid additives) into the bulk material on location prior to the material being provided to a blender.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of a bulk material handling system having a mulling device suitable for treating and transferring bulk material from a portable container to a blender unit, in accordance with an embodiment of the present disclosure;



FIG. 2 is a schematic block diagram of a bulk material handling system having a mulling device suitable for treating and transferring bulk material from a portable container to a pump, in accordance with an embodiment of the present disclosure;



FIG. 3 is a schematic side view of a portable support structure having a mulling device used to treat and route bulk material to an output location, in accordance with an embodiment of the present disclosure;



FIG. 4 is a perspective view of a mulling device that can be incorporated into a support structure, in accordance with an embodiment of the present disclosure; and



FIG. 5 is a perspective view of an outlet of the mulling device of FIG. 4, in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.


Certain embodiments according to the present disclosure may be directed to systems and methods for efficiently managing bulk material (e.g., bulk solid or liquid material). Bulk material handling systems are used in a wide variety of contexts including, but not limited to, drilling and completion of oil and gas wells, concrete mixing applications, agriculture, and others. The disclosed embodiments are directed to systems and methods for efficiently combining additives into bulk material while transferring the bulk material about a job site. The systems may include a support structure used to receive one or more portable containers of bulk material, and a mulling device disposed beneath and coupled to the support structure to provide bulk material treatment capabilities. Specifically, the mulling device may facilitate mixing of coatings or other additives with bulk material that is released from the portable containers, as well as transfer of the mixture to an outlet location. The disclosed techniques may be used to efficiently handle any desirable bulk material having a solid or liquid constituency including, but not limited to, sand, proppant, get particulate, diverting agent, dry-gel particulate, and others.


In currently existing on-site bulk material handling applications, dry material (e.g., sand, proppant, gel particulate, or dry-gel particulate) may be used during the formation of treatment fluids. In such applications, the bulk material is often transferred between transportation units, storage tanks, blenders, and other on-site components via pneumatic transfer, sand screws, chutes, conveyor belts, and other components. Recently, a new method for transferring bulk material to a hydraulic fracturing site involves using portable containers to transport the bulk material. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the site when the material is needed. These containers generally include a discharge gate at the bottom that can be actuated to empty the material contents of the container at a desired time.


The disclosed material handling system provides an efficient method for transferring bulk material from these transportable containers and conditioning the material by mulling the bulk material with one or more additives before it is delivered to a blender, mixer, or pump. The material handling system may include a support structure designed to receive and hold at least one portable container of bulk material at an elevated position, and a mulling device disposed beneath and coupled to the support structure. The mulling device is used to combine the bulk material that is discharged from the removable containers with additives to coat or otherwise condition the material. The term “mulling” may refer to a process of mixing dry elements (e.g., dry bulk material) with a wetting substance or coating substance (semi-dry or semi-wet). The mulling device is also used to transfer the treated bulk material to an output location, such as into a blender or a pump. The mulling device and the support structure may be integrated into a trailer frame for easy mobility.


By incorporating a mulling device into the support structure, the disclosed material handling system may allow for conditioning of the bulk material (e.g., dry proppant) prior to wetting the bulk material in a mixing tub of a blender. This conditioning may include an application of coatings (e.g., SandWedge™, FinesWedge™, resin coatings, etc), gelling agents, diverters, friction reducers, surfactants, or other liquid additives to the bulk material. In some embodiments, the mulling device may facilitate all the conditioning/wetting of the bulk material used to generate a treatment fluid for use in a downhole environment. As a result, the treatment fluid may be output from the mulling device directly to a fluid pump, instead of a blender.


The disclosed support structure may provide an elevated location for one or more bulk material containers to be placed while the proppant (or any other bulk material used in fluid mixtures at a job site) is transferred from the containers to the mulling device. The support structure may elevate the bulk material containers to a sufficient height above the mulling device and a blender or pump inlet such that the bulk material can be routed from the containers directly through the mulling device and into the blender or pump inlet. This may eliminate the need for any subsequent pneumatic or mechanical conveyance of the bulk material (e.g., via a separate mechanical conveying system) from the containers to the blender or pump. This may improve the energy efficiency of bulk material handling operations at a job site. In addition, the combined support structure and mulling device may simplify the operation of transferring bulk material, reduce material spillage, and decrease dust generation.


Turning now to the drawings, FIG. 1 is a block diagram of a bulk material handling system 10. The system 10 includes a container 12 elevated on a portable support structure 14 and holding a quantity of bulk material (e.g., solid or liquid treating material). A mulling device 16 is disposed beneath and coupled to the support structure 14. The mulling device 16 may utilize one or more mulling screws (not shown) to combine bulk material from the container 12 with additives while advancing the bulk material toward an outlet 17.


In some embodiments, the portable support structure 14 may include a frame 18 for receiving and holding the container 12, and a gravity feed outlet 20 for directing bulk material away from the container 12. The outlet 20 may be coupled to and extending from the frame 18 to direct bulk material from the container 12 directly into the mulling device 16. The outlet 20 may utilize a gravity feed to provide a controlled, i.e. metered, flow of bulk material from the container 12 into the mulling device 16. In other embodiments, the support structure 14 may function just as a frame for receiving and supporting the container 12, and the container 12 may selectively dispense bulk material directly into the mulling device 16 via gravity.


Regardless of how the bulk material enters the mulling device 16, the mulling device 16 may combine the bulk material with one or more additives provided to the mulling device 16 while also transferring the combined mixture of bulk material and additives to another component positioned at the outlet 17 of the mulling device 16. The additives mixed into the bulk material via the mulling device 16 may include, for example, coatings (SandWedge™, FinesWedge™, resin coatings, etc.) other gelling agents, diverters, friction reducers, surfactants, or other liquid additives. In some embodiments, the mulling device 16 may be used to generate “liquid sand”, which is a thick mixture of sand (bulk material) suspended in gel (additive).


In some embodiments, the system 10 may include one or more pumps 22 used to draw liquid additive from a fluid supply container 24 that is not directly supported with the support structure 14 and the mulling device 16. The pumps 22 may be integrated into the same structure as the support structure 14 and the mulling device 16. As those of ordinary skill in the art will appreciate, inlets for additives introduced into the mulling device may comprise more than the one input flow line illustrated in FIG. 1.


The mulling device 16 may provide a controlled, i.e. metered, flow of bulk material (combined with other additives) to another component disposed at the outlet 17 of the mulling device 16. In FIG. 1, for example, the mulling device 16 may transfer the combination of bulk material and additives to a blender unit 26. Once the bulk material has been mulled, the mulling device 16 may discharge the bulk material combined with additives into the blender unit 26 to be further mixed with additional liquid to form a final treatment fluid or slurry.


In some embodiments, the blender unit 26 may include a hopper 28 and a mixer 30 (e.g., mixing compartment). The blender unit 26 may also include a metering mechanism 32 for providing a controlled, i.e. metered, flow of bulk material from the hopper 28 to the mixer 30. The metering mechanism 32 may be an auger or similar device that lifts the bulk material mixture from the hopper 28 into a relatively large mixer 30.


In other embodiments, the blender unit 26 may not include the hopper 28. Instead, the system 10 may be designed such that the mulling device 16 provides bulk material directly into the mixer 30 of the blender unit 26. That way, the blender unit 26 does not require additional power for operating an auger or similar metering mechanism 32. This arrangement also reduces the amount of equipment on site, since the hopper 28 and metering mechanism 32 are not required. Further, providing the bulk material mixed with additives directly from the mulling device 16 to the mixer 30 may reduce or eliminate a source of dust on location from the hopper and elevated auger. In addition, transferring the bulk material with additives via horizontally oriented mulling screws is a more efficient use of energy than metering the bulk material upward into an elevated mixer.


Wetting substances such as water or other liquid additives may be supplied to the mixer 30 (e.g., mixing compartment) through a fluid inlet 34. As those of ordinary skill in the art will appreciate, the fluid inlet 34 may comprise more than the one input flow line illustrated in FIG. 1. The water or other liquid additives may be mixed with the already pre-combined bulk material/additives mixture to produce (at an outlet 36) a treatment fluid. This treatment fluid may include, for example, a fracing fluid, a mixture combining several types of proppant, proppant/dry-gel particulate mixture, sand/sand-diverting agents mixture, cement slurry, drilling mud, a mortar or concrete mixture, or any other fluid mixture for use on location. The outlet 36 may be coupled to a pump for delivering the treatment fluid to a desired location (e.g., a hydrocarbon recovery well) for a treating process.


As shown in FIG. 2, other embodiments of the disclosed system 10 may utilize the mulling device 16 to mix and transfer a combination of bulk material and additives directly to a pump 70. In such instances, the mulling device may introduce all the desired additives and a sufficient amount of liquid into the bulk material to form the final treatment fluid or slurry. Thus, the mulling device 16 may perform the functions that would otherwise be performed by a separate blender unit (e.g., 26 of FIG. 1). A mulling device 16 may output the process ready treatment fluid or slurry directly into the pump 70 (e.g., high pressure pump), which then pumps the treatment fluid to a desired location (e.g., a hydrocarbon recovery well) for a treating process.


It should be noted that the disclosed system 10 of FIGS. 1 and 2 may be used in other contexts as well. For example, the bulk material handling system 10 may be used in concrete mixing operations (e.g., at a construction site) to dispense aggregate from the container 12 through the mulling device 16 (adding other aggregate, coatings, or liquid additives) and into a final concrete mixing apparatus (mixer 30). In addition, the bulk material handling system 10 may be used in agriculture applications to dispense grain, feed, or seed from containers 12 into a mulling device 16 for combination with fertilizers, coatings, and/or other additives.


It should be noted that the disclosed container 12, support structure 14, and mulling device 16 of FIGS. 1 and 2 may be utilized to condition bulk material for use in a variety of treating processes. For example, the disclosed systems and methods may be utilized to provide proppant materials into fracture treatments performed on a hydrocarbon recovery well. In other embodiments, the disclosed techniques may be used to provide other materials (e.g., non-proppant) for diversions, conductor-frac applications, cement mixing, drilling mud mixing, and other fluid mixing applications.


As illustrated, the container 12 may be elevated above an outlet location via the support structure 14. The support structure 14 is designed to elevate the container 12 above the level of the mulling device 16 (and a blender/pump inlet) to allow the bulk material to gravity feed from the container 12 to the mulling device 16. This way, the container 12 is able to sit on the support structure 14 and output bulk material directly into the mulling device 16 via a gravity feed.


Although shown as supporting a single container 12, other embodiments of the support structure 14 may be configured to support multiple containers 12. The exact number of containers 12 that the support structure 14 can hold may depend on a combination of factors such as, for example, the volume, width, and weight of the containers 12 to be disposed thereon.


In any case, the container(s) 12 may be completely separable and transportable from the support structure 14, such that any container 12 may be selectively removed from the support structure 14 and replaced with another container 12. That way, once the bulk material from the container 12 runs low or empties, a new container 12 may be placed on the support structure 14 to maintain a steady flow of bulk material to the mulling device 16 and ultimately an outlet location. In some instances, the container 12 may be closed before being completely emptied, removed from the support structure 14, and replaced by a container 12 holding a different type of bulk material to be provided to the mulling device 16.


A portable bulk storage system 38 may be provided at the site for storing one or more additional containers 12 of bulk material to be positioned on the frame 18 of the support structure 14. The bulk material containers 12 may be transported to the desired location on a transportation unit (e.g., truck). The bulk storage system 38 may be the transportation unit itself or may be a skid, a pallet, or some other holding area. One or more containers 12 of bulk material may be transferred from the storage system 38 onto the support structure 14, as indicated by arrow 39. This transfer may be performed by lifting the container 12 via a hoisting mechanism, such as a forklift, a crane, or a specially designed container management device.


When the one or more containers 12 are positioned on the support structure 14, discharge gates on one or more of the containers 12 may be opened, allowing bulk material to flow from the containers 12 into the outlet 20 of the support structure 14 and/or directly into the mulling device 16. The mulling device 16 may then mix additives into the bulk material while transferring the mixture directly into a blender, pump, or other output device.


After one or more of the containers 12 on the support structure 14 are emptied, the empty container(s) 12 may be removed from the support structure 14 via a hoisting mechanism. In some embodiments, the one or more empty containers 12 may be positioned on another bulk storage system 38 (e.g., a transportation unit, a skid, a pallet, or some other holding area) until they can be removed from the site and/or refilled. In other embodiments, the one or more empty containers 12 may be positioned directly onto a transportation unit for transporting the empty containers 12 away from the site. It should be noted that the same transportation unit used to provide one or more filled containers 12 to the location may then be utilized to remove one or more empty containers 12 from the site.


The bulk material may be discharged from the container 12 by the force of gravity upon opening a discharge gate (not shown) on the container 12. The support structure 14 may include a flow regulating mechanism 40 to control or regulate the flow of bulk material from the container 12 into the mulling device 16. In some embodiments, the flow regulating mechanism may be incorporated into the gravity feed outlet 20 of the support structure 14. In the illustrated embodiment, the flow regulating mechanism 40 may include a metered hopper that controls the rate of bulk material being discharged from the container 12 directly into the mulling device 16. Other types of flow regulating mechanisms 40, such as a flow control valve, may be incorporated into the support structure 14 to facilitate controlled flow of bulk material into the mulling device 16. Incorporating the flow regulating mechanism 40 into the support structure 14 (as opposed to the container 12) allows the container 12 to be fairly simple to construct and operate. That way, the interchangeable containers 12 may be used to simply output bulk material by the force of gravity, while the support structure 14 includes more complex components to meter or automate the flow of bulk material from the containers 12.


The support structure 14 may include other features as well. For example, actuators (not shown) may be disposed on the support structure and selectively controlled to actuate a discharge gate of the container 12 disposed on the support structure 14 between an open and closed position. In some embodiments, the support structure 14 may be equipped with sensing equipment and indicators (such as lights) for providing a visual indication of the presence, weight, or open/closed status of a container 12 disposed in a given location on the support structure 14. In the illustrated embodiment, the support structure 14 may include a positioning system for receiving the container 12 into a desired location on the support structure 14. The positioning system may include a plurality of alignment pins 42 (as shown), cradles, or any other desirable type of positioning system for ensuring that the container 12 is disposed in a correct position to deliver the bulk material contents of the container 12 to the mulling device 16.



FIG. 3 illustrates an embodiment of the material handling system 10 having the support structure 14 and the mulling device 16. The support structure 14 is generally disposed above and coupled directly to the mulling device 16. As shown, the support structure 14 and the mulling device 16 may be integrated into a specialized trailer unit 90. As mentioned above, the mulling device 16 may be used to combine multiple types of bulk materials (e.g., proppant), dry gel, surfactant, friction reducers, diverters, liquid additives, and other substances. Although not shown, one or more liquid additive pumps (e.g., 22 of FIGS. 1 and 2) may be added to the trailer unit 90 to draw fluid from separate fluid supply containers (e.g., 24 of FIGS. 1 and 2) into the mulling device 16.


In the illustrated embodiment, the support structure 14 may be designed to receive multiple containers 12. Specifically, the support structure 14 may include a frame sized to receive and support up to four portable containers 12. Although shown as supporting four containers 12, other embodiments of the support structure may be configured to support other numbers (e.g., 1, 2, 3, 5, 6, 7, 8, or more) of containers 12. The exact number of containers 12 that the support structure 14 can hold may depend on a combination of factors such as, for example, the volume, width, and weight of the containers 12 to be disposed thereon.


The support structure 14 may include a flow regulating mechanism 40 (such as a flow control valve) corresponding to each container receiving position on the support structure 14. In addition, each container receiving position on the support structure 14 may feature alignment pins 42 or some other type of positioning system for receiving/positioning the containers 12 on the support structure 14. As mentioned above, the positioning systems may ensure that the containers 12 discharge bulk material directly into a corresponding flow regulating mechanism 40 and, ultimately, the mulling device 16.


The mulling device 16 may include one or more mulling screws 96, which are described in greater detail below. The mulling screws 96, as illustrated, are generally oriented horizontally. One or more containers 12 may discharge bulk material into the mulling device 16 from above, as shown by arrows 98. Rotation of the mulling screws 96 may combine bulk material received from the one or more containers 12 with additives that are pumped or otherwise introduced into the mulling device 16. In addition, rotation of the mulling screws 96 transfers the bulk material mixed with additives horizontally toward the outlet end 17 of the mulling device 16, as shown by arrow 100. The bulk material and additive mixture exits the mulling device 16 (at the outlet 17) and moves directly into an adjacent blender unit, pump, or other piece of equipment on location.


It should be noted that, in some embodiments, it may be desirable to combine multiple different types of bulk material together via the mulling device 16. To that end, one or more of the containers 12 may hold a first type of bulk material, while another one or more containers 12 hold a second type of bulk material. The flow regulating mechanisms 40 for the different containers 12 may be specifically controlled to output a desired ratio of the first type to the second type of bulk material into the mulling device 16. The mulling device 16 may then mix the two (or more) types of bulk material, along with any desired additives, for transfer and output to another component on location.


In the illustrated embodiment, the trailer unit 90 includes wheels 92 for enabling transportation of the connected support structure 14 and mulling device 16 to and from a desired location (e.g., well site). In the illustrated embodiment, a front end 94 of the trailer unit 90 may be designed to lift up and hook onto a trailer hitch of a transportation vehicle. Once the trailer unit 90 is transported to the site, the front end 94 may be lifted off the transportation vehicle and the trailer unit 90 may be lowered directly to the ground, without the use of a hoisting mechanism (e.g., forklift, crane, etc.). The support structure 14 and mulling device 16 may be integrated into other types of mobile trailer units 90 as well.


Having the support structure 14 and mulling device 16 integrated into a mobile trailer unit 90 may improve the reliability of the various components that make up the support structure 14 and increase the life of the unit. This is because shock from movement of the relatively large support structure/mulling device about a site can lead to undesirable operation of the support structure components. With the support structure 14 and mulling device 16 integrated into the trailer unit 90, the shock due to loading/unloading the support structure 14 and mulling device 16 is minimized.


In some embodiments, the trailer unit 90 may include an air suspension system or other components to reduce shock on the support structure 14 during transportation of the trailer unit 90 (e.g., traveling along a road). The suspension system may help to isolate the electronics and controls of the support structure 14 and/or mulling device 16 from shock loading during transportation of the support structure trailer unit 90 along the road.



FIGS. 4 and 5 illustrate a more detailed embodiment of the mulling device 16 that may be utilized in the disclosed bulk material handling system 10. It should be noted that the specific design of the mulling device 16 will depend on the type of bulk material that is being processed through the system as well as the amount of wetting liquid or liquid additive introduced into the mulling device.


The mulling device 16, as shown, may include an opening 130 at the top for receiving bulk material from one or more portable containers (12 of FIG. 3) disposed on the support structure (14 of FIG. 3). As shown, the upper opening 130 may be relatively large to accommodate a relatively heavy flow of bulk material discharged from the containers 12. The opening 130 provides access to a cavity 132 formed in the mulling device 16. In the illustrated embodiment, the cavity 132 is bounded by four side walls 134 and a bottom surface 136 of the mulling device 16. Bulk material may be dropped into the cavity 132 through the top opening 130 under a force of gravity, as shown by arrow 138.


The mulling device 16, as shown, may include an opening 130 at the top for receiving bulk material from one or more portable containers (12 of FIG. 3) disposed on the support structure (14 of FIG. 3). As shown, the upper opening 130 may be relatively large to accommodate a relatively heavy flow of bulk material discharged from the containers 12. The opening 130 provides access to a cavity 132 formed in the mulling device 16. In the illustrated embodiment, the cavity 132 is bounded by four side walls 134 and a bottom surface 136 of the mulling device 16. As shown, the mulling device 16 comprises a housing having the side walls 134 and bottom surface 136 and having the cavity 132 formed therein. Bulk material may be dropped into the cavity 132 through the top opening 130 under a force of gravity, as shown by arrow 138.


In the illustrated embodiment, the mulling device 16 utilizes a pair of mulling screws 96 to mull the bulk material with the additives to form a mixture. In other embodiments, different numbers or arrangements of mulling screws 96 may be used to condition the bulk material and transfer the bulk material/additive mixture to an outlet location. The mulling screws 96 may be specifically shaped to include interlocking threads or grooves 146 to pick up and mull the particles of bulk material that have been released into the cavity 132. The threads/grooves 146 may be any desirable thickness to accommodate the type of bulk material and additives being combined and transferred through the mulling device 16. The mulling screws 96 may work to massage the coating, liquid, resin, or other additives into the bulk material so that the additives cover the surface of every bulk material particle. That way, no large clumps of wet additive (or dry bulk material) will exit the mulling device 16.


At an outlet 150 or discharge end of the cavity 132, the mulling device 16 may include a shrouded section 152. The shrouded section 152 may include an elongated section of side wall 134 that the mulling screws 96 extend through to push the bulk material out of the cavity 132. This shrouded section 152 may enable the discharge end 150 of the mulling device 16 to function as a progressive cavity pump (or extruder). Bulk material that enters the shrouded section 152 through the grooves in the mulling screws 96 is forced into a compacted space and metered steadily through the outlet 150. A speed of the screws 96 may be controlled to meter the mixture of bulk material and additives out of the mulling device 16 at a desired rate.


The mulling screws 96 may be controlled to rotate in opposite directions (arrows 148) from one another so that the bulk material and liquid additives are effectively moved through and combined in the central region of the mulling device 16. The threads/grooves 146 on the mulling screws 96 may be oriented at a diagonal, as shown, so that as the mulling screws 96 rotate they push the bulk material/additive mixture toward the outlet 150 of the cavity 132.


In some embodiments, the mulling device 16 may be divided into multiple sections along its longitudinal axis. For example, the mulling device 16 may include multiple inlets 140 for introducing additives into the mulling device 16, the inlets 140 being disposed at different positions along the total length of the mulling device 16. This allows the mulling device 16 to mix different additives into the bulk material at different points as the bulk material is transferred through the mulling device 16 toward an outlet. In some embodiments, for example, a first inlet 140 (or pair of inlets 140) may introduce a first additive into the mulling device so that the mulling screws 96 mull the bulk material until it is coated in the first additive. At a further longitudinal position, a second inlet 140 (or pair of inlets 140) may introduce a second additive into the mulling device so that the mulling screws 96 mull the bulk material until a layer of the second additive forms over the first additive coating on the bulk material.


In other embodiments, different types of mulling screws 96 may be utilized at different longitudinal locations along the mulling device 16. For example, the mulling screws 96 may be designed with different patterns of threads/grooves 146 at the different longitudinal locations. In other embodiments, different longitudinal sections of the mulling device 16 may feature different numbers of mulling screws 96 used to mull the bulk material with the various additives.


In some embodiments, the mulling device 16 may be designed with a single cavity 132 extending the entire length of the mulling device 16. In other embodiments, the mulling device 16 may be divided into multiple longitudinal sections that each include a designated cavity 132 similar to the one illustrated in FIGS. 4 and 5. For example, the mulling device 16 used in the system of FIG. 3 may include four different cavities 132 formed therein, one beneath each of the portable container locations. The mulling screws 96 may extend through each of the cavities 132 along the length of the mulling device 16.


Other types, arrangements, and variations of components (e.g., cavity, opening, inlets, mulling screws, shrouded sections, etc.) may be utilized in the mulling device 16 to combine bulk material from the elevated portable containers 12 with fluid and other additives.


Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.

Claims
  • 1. A system, comprising: a support structure for holding at least one portable container of bulk material at an elevated position; anda mulling device disposed beneath the support structure, wherein the mulling device comprises: a housing having at least a plurality of side walls, a bottom, and a cavity formed therein;an opening in the housing for receiving bulk material from the at least one portable container disposed on the support structure into the mulling device;at least one inlet in the housing for introducing one or more additives into the bulk material within the mulling device, wherein the at least one inlet is located beneath the support structure; andat least one mulling screw disposed in the cavity of the housing, wherein the at least one mulling screw mixes the one or more additives with the bulk material while transferring the bulk material longitudinally through the cavity;a liquid additive pump, wherein the liquid additive pump has a pump outlet, wherein the liquid additive pump pumps one or more additives from the pump outlet through the at least one inlet into the cavity of the mulling device; andan outlet disposed at a longitudinal end of the housing where the bulk material combined with the one or more additives is discharged from the mulling device.
  • 2. The system of claim 1, wherein the support structure and the mulling device are integrated into a trailer unit.
  • 3. The system of claim 1, further comprising a blender disposed adjacent to the mulling device, wherein the blender comprises a mixing compartment for mixing additional liquid additives into the bulk material to generate a treatment fluid.
  • 4. The system of claim 3, wherein the support structure and the mulling device are positioned proximate the blender such that the mulling device outputs the bulk material combined with the one or more additives from the outlet directly into the mixing compartment of the blender.
  • 5. The system of claim 1, wherein the support structure comprises a positioning system for receiving and holding the at least one portable container at a specific location on the support structure.
  • 6. The system of claim 1, wherein the support structure comprises a flow regulation mechanism for controlling an amount of bulk material released from the at least one portable container.
  • 7. The system of claim 1, wherein the at least one mulling screw is oriented horizontally.
  • 8. The system of claim 1, wherein the mulling device comprises at least one other inlet in the housing, wherein the at least one other inlet is separate from the at least one inlet in the housing and separate from the opening in the housing, wherein the at least one inlet and the at least one other inlet are disposed at different longitudinal positions along the mulling device for introducing different additives.
  • 9. The system of claim 1, wherein the at least one mulling screw has different patterns of threads or grooves at different longitudinal positions along the mulling device.
  • 10. The system of claim 1, wherein the at least one mulling screw comprises two mulling screws with interlocking threads or grooves formed thereon.
  • 11. The system of claim 1, wherein the mulling device comprises a shrouded section at an outlet end thereof, wherein the shrouded section comprises one of the plurality of side walls of the housing at the outlet end of the mulling device, wherein a dimension of the one of the plurality of side walls is elongated in a direction parallel to an axis of the at least one mulling screw, and wherein the at least one mulling screw extends entirely through the one of the plurality of side walls.
  • 12. The system of claim 1, wherein the opening is in an upper surface of the housing and wherein the at least one inlet is in one of the plurality of side walls of the housing.
  • 13. A method, comprising: feeding bulk material from one or more portable containers directly into a mulling device disposed beneath a support structure, the one or more portable containers being held on the support structure, wherein the mulling device comprises a housing having at least a plurality of side walls, a bottom, a cavity formed therein, and an opening in the housing for receiving the bulk material into the mulling device;pumping one or more additives via a liquid additive pump into the cavity of the mulling device, wherein the liquid additive pump has a pump outlet, wherein the one or more additives are pumped from the pump outlet through at least one inlet in the housing to the cavity;introducing the one or more additives into the bulk material within the mulling device via the at least one inlet in the housing, wherein the at least one inlet is disposed beneath the support structure;combining the one or more additives with the bulk material via at least one mulling screw of the mulling device, wherein the at least one mulling screw is disposed in the cavity of the housing; andtransferring the bulk material combined with the one or more additives to an outlet of the mulling device disposed at a longitudinal end of the housing via the at least one mulling screw.
  • 14. The method of claim 13, further comprising outputting the bulk material combined with the one or more additives directly from the outlet of the mulling device into a hopper of a blender.
  • 15. The method of claim 13, further comprising outputting the bulk material combined with the one or more additives directly from the outlet of the mulling device into a mixing compartment of a blender.
  • 16. The method of claim 13, further comprising combining the one or more additives with the bulk material via the mulling device to generate a treatment fluid, and outputting the treatment fluid from the outlet of the mulling device directly to a pump.
  • 17. The method of claim 13, wherein the one or more additives comprise at least one additive selected from the group consisting of: a coating substance, a wetting substance, a gelling agent, a diverter, a friction reducer, and a surfactant.
  • 18. The method of claim 13, further comprising: introducing a first additive into the bulk material via the at least one inlet in the housing;combining the first additive with the bulk material at a first longitudinal location of the mulling device via the at least one mulling screw;introducing a second additive into the bulk material via at least one other inlet in the housing, wherein the at least one other inlet is separate from the at least one inlet in the housing and separate from the opening in the housing, and wherein the at least one inlet and the at least one other inlet are disposed at different longitudinal positions along the mulling device; andcombining the second additive with the bulk material at a second longitudinal location of the mulling device via the at least one mulling screw.
  • 19. The method of claim 13, further comprising feeding the bulk material from the one or more portable containers into the mulling device via gravity.
  • 20. The method of claim 13, wherein the one or more additives comprise a resin.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/022489 3/15/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/160283 9/21/2017 WO A
US Referenced Citations (281)
Number Name Date Kind
710611 Ray Oct 1902 A
917646 Otto Apr 1909 A
1519153 Mitton Sep 1923 A
1726603 Wallace Sep 1929 A
1795987 Adams Mar 1931 A
2172244 Grundler Sep 1939 A
2231911 Hitt Feb 1941 A
2281497 Hyson et al. Apr 1942 A
2385245 Willoughby Sep 1945 A
2415782 Zademach Feb 1947 A
2513012 Dugas Jun 1950 A
2563470 Kane Aug 1951 A
2652174 Shea Sep 1953 A
2670866 Glesby Mar 1954 A
2678737 Mangrum May 1954 A
2703659 Hutchins Mar 1955 A
2756073 Bridge Jul 1956 A
2759737 Manning Aug 1956 A
2802603 McCray Aug 1957 A
2867336 Soldini Jan 1959 A
3049248 Heltzel et al. Aug 1962 A
3083879 Coleman Apr 1963 A
3151779 Rensch et al. Oct 1964 A
3203370 Haug Aug 1965 A
3217927 Bale, Jr. et al. Nov 1965 A
3315826 Gardner Apr 1967 A
3318473 Jones et al. May 1967 A
3326572 Murray Jun 1967 A
3343688 Ross Sep 1967 A
3354918 Coleman Nov 1967 A
3380333 Clay et al. Apr 1968 A
3404963 Fritsche et al. Oct 1968 A
3410530 Gilman Nov 1968 A
3432151 O'Loughlin Mar 1969 A
3467408 Regalia Sep 1969 A
3476270 Cox et al. Nov 1969 A
3602400 Cooke Aug 1971 A
3627555 Driscoll Dec 1971 A
3698693 Poncet Oct 1972 A
3785534 Smith Jan 1974 A
3802584 Sackett, Sr. et al. Apr 1974 A
3986708 Heltzel et al. Oct 1976 A
4023719 Noyon May 1977 A
4058239 Van Mill Nov 1977 A
4138163 Calvert et al. Feb 1979 A
4178117 Brugler Dec 1979 A
4204773 Bates May 1980 A
4248337 Zimmer Feb 1981 A
4258953 Johnson Mar 1981 A
4313708 Tiliakos Feb 1982 A
4395052 Rash Jul 1983 A
4398653 Daloisio Aug 1983 A
4423884 Gevers Jan 1984 A
4544279 Rudolph Oct 1985 A
4548507 Mathis et al. Oct 1985 A
4583663 Bonerb Apr 1986 A
4626166 Jolly Dec 1986 A
4701095 Berryman et al. Oct 1987 A
4806065 Holt et al. Feb 1989 A
4850702 Arribau Jul 1989 A
4856681 Murray Aug 1989 A
4900157 Stegemoeller Feb 1990 A
4919540 Stegemoeller et al. Apr 1990 A
4956821 Fenelon Sep 1990 A
4993883 Jones Feb 1991 A
4997335 Prince Mar 1991 A
5036979 Selz Aug 1991 A
5096096 Calaunan Mar 1992 A
5114169 Botkin et al. May 1992 A
5149192 Hamm Sep 1992 A
5303998 Whitlatch et al. Apr 1994 A
5339996 Dubbert et al. Aug 1994 A
5343813 Septer Sep 1994 A
5375730 Bahr et al. Dec 1994 A
5401129 Eatinger Mar 1995 A
5413154 Hurst, Jr. et al. May 1995 A
5426137 Allen Jun 1995 A
5441321 Karpisek Aug 1995 A
5443350 Wilson Aug 1995 A
5445289 Owen Aug 1995 A
5590976 Kilheffer Jan 1997 A
5609417 Otte Mar 1997 A
5722552 Olson Mar 1998 A
5772390 Walker Jun 1998 A
5806441 Chung Sep 1998 A
5913459 Gill et al. Jun 1999 A
5915913 Greenlaw et al. Jun 1999 A
5927356 Henderson Jul 1999 A
5944470 Bonerb Aug 1999 A
5997099 Collins Dec 1999 A
6059372 McDonald et al. May 2000 A
6112946 Bennett et al. Sep 2000 A
6126307 Black et al. Oct 2000 A
6193402 Grimland Feb 2001 B1
6247594 Garton Jun 2001 B1
6379086 Goth Apr 2002 B1
6425627 Gee Jul 2002 B1
6491421 Rondeau Dec 2002 B2
6517232 Blue Feb 2003 B1
6536939 Blue Mar 2003 B1
6537015 Lim et al. Mar 2003 B2
6568567 McKenzie et al. May 2003 B2
6622849 Sperling Sep 2003 B1
6655548 McClure, Jr. et al. Dec 2003 B2
6876904 Oberg et al. Apr 2005 B2
6980914 Bivens et al. Dec 2005 B2
7008163 Russell Mar 2006 B2
7086342 O'Neall et al. Aug 2006 B2
7100896 Cox Sep 2006 B1
7114905 Dibdin Oct 2006 B2
7252309 Eng Soon et al. Aug 2007 B2
7284579 Elgan Oct 2007 B2
7451015 Mazur et al. Nov 2008 B2
7475796 Garton Jan 2009 B2
7500817 Furrer et al. Mar 2009 B2
7513280 Brashears et al. Apr 2009 B2
7665788 Dibdin et al. Feb 2010 B2
7762281 Schuld Jul 2010 B2
7997213 Gauthier et al. Aug 2011 B1
8387824 Wietgrefe Mar 2013 B2
8434990 Claussen May 2013 B2
D688349 Oren et al. Aug 2013 S
D688350 Oren et al. Aug 2013 S
D688351 Oren et al. Aug 2013 S
D688772 Oren et al. Aug 2013 S
8505780 Oren Aug 2013 B2
8545148 Wanek-Pusset et al. Oct 2013 B2
8573917 Renyer Nov 2013 B2
8585341 Oren Nov 2013 B1
8607289 Brown et al. Dec 2013 B2
8616370 Allegretti et al. Dec 2013 B2
8622251 Oren Jan 2014 B2
8662525 Dierks et al. Mar 2014 B1
8668430 Oren Mar 2014 B2
D703582 Oren Apr 2014 S
8827118 Oren Sep 2014 B2
8834012 Case et al. Sep 2014 B2
8887914 Allegretti et al. Nov 2014 B2
RE45713 Oren et al. Oct 2015 E
9162603 Oren Oct 2015 B2
RE45788 Oren et al. Nov 2015 E
9248772 Oren Feb 2016 B2
RE45914 Oren et al. Mar 2016 E
9296518 Oren Mar 2016 B2
9340353 Oren May 2016 B2
9358916 Oren Jun 2016 B2
9394102 Oren Jul 2016 B2
9403626 Oren Aug 2016 B2
9421899 Oren Aug 2016 B2
9440785 Oren Sep 2016 B2
9446801 Oren Sep 2016 B1
9475661 Oren Oct 2016 B2
9511929 Oren Dec 2016 B2
9522816 Taylor Dec 2016 B2
9527664 Oren Dec 2016 B2
9580238 Friesen et al. Feb 2017 B2
RE46334 Oren et al. Mar 2017 E
9617065 Allegretti et al. Apr 2017 B2
9617066 Oren Apr 2017 B2
9624030 Oren et al. Apr 2017 B2
9624036 Luharuka et al. Apr 2017 B2
9643774 Oren May 2017 B2
9650216 Allegretti May 2017 B2
9656799 Oren et al. May 2017 B2
9669993 Oren et al. Jun 2017 B2
9670752 Glynn Jun 2017 B2
9676554 Glynn et al. Jun 2017 B2
9682815 Oren Jun 2017 B2
9694970 Oren et al. Jul 2017 B2
9701463 Oren et al. Jul 2017 B2
9718609 Oren et al. Aug 2017 B2
9718610 Oren Aug 2017 B2
9725233 Oren et al. Aug 2017 B2
9725234 Oren et al. Aug 2017 B2
9738439 Oren et al. Aug 2017 B2
RE46531 Oren et al. Sep 2017 E
9758081 Oren Sep 2017 B2
9758993 Allegretti et al. Sep 2017 B1
9771224 Oren et al. Sep 2017 B2
9783338 Allegretti et al. Oct 2017 B1
9796319 Oren Oct 2017 B1
9796504 Allegretti et al. Oct 2017 B1
9809381 Oren et al. Nov 2017 B2
9815620 Oren Nov 2017 B2
9828135 Allegretti et al. Nov 2017 B2
9840366 Oren et al. Dec 2017 B2
9969564 Oren et al. May 2018 B2
9988182 Allegretti et al. Jun 2018 B2
10059246 Oren Aug 2018 B1
10081993 Walker et al. Sep 2018 B2
10189599 Allegretti et al. Jan 2019 B2
10207753 O'Marra et al. Feb 2019 B2
10287091 Allegretti May 2019 B2
10308421 Allegretti Jun 2019 B2
10464741 Oren Nov 2019 B2
10486854 Allegretti et al. Nov 2019 B2
10518828 Oren et al. Dec 2019 B2
10569242 Stegemoeller Feb 2020 B2
10604338 Allegretti Mar 2020 B2
10661980 Oren May 2020 B2
10661981 Oren May 2020 B2
20020121464 Soldwish-Zoole et al. Sep 2002 A1
20030159310 Hensley Aug 2003 A1
20040008571 Goody Jan 2004 A1
20040031335 Fromme et al. Feb 2004 A1
20040206646 Goh et al. Oct 2004 A1
20040258508 Jewell Dec 2004 A1
20050219941 Christenson Oct 2005 A1
20060013061 Bivens et al. Jan 2006 A1
20070014185 Diosse et al. Jan 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20080187423 Mauchle Aug 2008 A1
20080294484 Furman et al. Nov 2008 A1
20090078410 Krenek et al. Mar 2009 A1
20090129903 Lyons, III May 2009 A1
20090292572 Alden et al. Nov 2009 A1
20090314791 Hartley et al. Dec 2009 A1
20100196129 Buckner Aug 2010 A1
20100319921 Eia et al. Dec 2010 A1
20120017812 Renyer et al. Jan 2012 A1
20120018093 Zuniga et al. Jan 2012 A1
20120037231 Janson Feb 2012 A1
20120181093 Fehr et al. Jul 2012 A1
20120219391 Teichrob et al. Aug 2012 A1
20130128687 Adams May 2013 A1
20130135958 O'Callaghan May 2013 A1
20130142601 McIver et al. Jun 2013 A1
20130206415 Sheesley Aug 2013 A1
20130284729 Cook Oct 2013 A1
20140023463 Oren Jan 2014 A1
20140023464 Oren et al. Jan 2014 A1
20140044508 Luharuka et al. Feb 2014 A1
20140076569 Pham Mar 2014 A1
20140083554 Harris Mar 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140299226 Oren et al. Oct 2014 A1
20140305769 Eiden, III et al. Oct 2014 A1
20140377042 McMahon Dec 2014 A1
20150003943 Oren et al. Jan 2015 A1
20150003955 Oren et al. Jan 2015 A1
20150016209 Barton et al. Jan 2015 A1
20150183578 Oren et al. Jul 2015 A9
20150191318 Martel Jul 2015 A1
20150284194 Oren et al. Oct 2015 A1
20150353293 Richard Dec 2015 A1
20150366405 Manchuliantsau Dec 2015 A1
20150368052 Sheesley Dec 2015 A1
20150375930 Oren et al. Dec 2015 A1
20160031658 Oren et al. Feb 2016 A1
20160039433 Oren et al. Feb 2016 A1
20160046438 Oren et al. Feb 2016 A1
20160046454 Oren et al. Feb 2016 A1
20160068342 Oren et al. Mar 2016 A1
20160130095 Oren et al. May 2016 A1
20160244279 Oren et al. Aug 2016 A1
20160264352 Oren Sep 2016 A1
20160332809 Harris Nov 2016 A1
20160332811 Harris Nov 2016 A1
20170021318 McIver et al. Jan 2017 A1
20170123437 Boyd et al. May 2017 A1
20170129696 Oren May 2017 A1
20170144834 Oren et al. May 2017 A1
20170190523 Oren et al. Jul 2017 A1
20170203915 Oren Jul 2017 A1
20170217353 Vander Pol et al. Aug 2017 A1
20170217671 Allegretti Aug 2017 A1
20170225883 Oren Aug 2017 A1
20170240350 Oren et al. Aug 2017 A1
20170240361 Glynn et al. Aug 2017 A1
20170240363 Oren Aug 2017 A1
20170267151 Oren Sep 2017 A1
20170283165 Oren Oct 2017 A1
20170313497 Schaffner et al. Nov 2017 A1
20170334639 Hawkins Nov 2017 A1
20170349226 Oren et al. Dec 2017 A1
20180257814 Allegretti et al. Sep 2018 A1
20180369762 Hunter Dec 2018 A1
20190009231 Warren et al. Jan 2019 A1
20190111401 Lucas et al. Apr 2019 A1
20200062448 Allegretti et al. Feb 2020 A1
20200147566 Stegemoeller May 2020 A1
Foreign Referenced Citations (15)
Number Date Country
2937826 Oct 2015 EP
2066220 Jul 1981 GB
2204847 Nov 1988 GB
2008239019 Oct 2008 JP
2008012513 Jan 2008 WO
2012017444 Feb 2012 WO
2013095871 Jun 2013 WO
2013142421 Sep 2013 WO
2014018129 Jan 2014 WO
2014018236 May 2014 WO
2015119799 Aug 2015 WO
2015191150 Dec 2015 WO
2015192061 Dec 2015 WO
2016044012 Mar 2016 WO
2016160067 Oct 2016 WO
Non-Patent Literature Citations (4)
Entry
International Preliminary Report on Patentability issued in related PCT Application No. PCT/US2016/022489 dated Sep. 27, 2018, 9 pages.
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2016/022489 dated Dec. 14, 2016, 12 pages.
Office Action issued in related Canadian Patent Application No. 2,996,055 dated Oct. 2, 2020, 5 pages.
U.S. Pat. No. 0,802,254A, Oct. 17, 1905, “Can-Cooking Apparatus,” John Baker et al.
Related Publications (1)
Number Date Country
20180369762 A1 Dec 2018 US