This invention pertains to aluminum extruded structural members. More particularly, this invention pertains to an aluminum multi-alloy monolithic extruded aircraft or vehicular structural member.
There are numerous applications that require a monolithic structural member to satisfy two dichotomous design requirements. In aerospace applications for example, engine beams, wing spars, and horizontal stabilizer spars have material requirements that differ in specific part locations. Material placement in these parts is currently accomplished by fastening skins and stingers in the wing and fuselage and attaching 2XXX and 7XXX series aluminum alloy spar caps in spars to achieve optimum load carrying capabilities. The 2XXX series aluminum alloy increases the part's damage tolerance while the 7XXX series aluminum alloy increases the part's structural and mechanical strength. Although this traditional “built-up” design is weight effective, it can be very costly to produce.
Other aerospace structural members such as fuselage stringers and top center wing boxes can also benefit from a high performance/weldable alloy combination. The key is having the weldable alloy near the joint. Extrusions with this type of combination enables alloys with good performance but poor weldability to be used for a wider range of structural applications that also require good weldability.
In light of the above, a need exists for a multi-alloy monolithic extruded structural member that can satisfy two dichotomous design requirements while reducing overall manufacturing time and costs associated with manufacturing such a vehicular structural member.
The present invention discloses a multi-alloy monolithic extruded structural member. The multi-alloy monolithic extruded vehicular structural member includes a first aluminum alloy and a second aluminum alloy.
In one embodiment, the first aluminum alloy and/or the second aluminum alloy is a heat treatable or a non-heat treatable aluminum alloy. In another embodiment, the first aluminum alloy and/or the second aluminum alloy is an aluminum-lithium alloy.
In yet another embodiment, the first aluminum alloy and/or the second aluminum alloy is an Aluminum Association 2XXX, 6XXX or 7XXX series aluminum alloy.
In another embodiment, a first alloy is selected for strength performance, and at least a second alloy selected for toughness, fatigue, and weldability performance depending upon the performance requirements of the extrusion.
This invention also discloses a method for manufacturing the multi-alloy monolithic extruded structural member. The method includes providing a first billet and at least a second billet each having an exterior surface, first end, and a second end; machining the first billet to form a first substantially flat surface; machining the second billet to form a second flat surface, positioning the first flat surface of the first billet adjacent to the second flat surface of the second billet, welding at least a portion of the first billet to the second billet to form a third billet, and extruding the third billet to form the monolithic multi-alloy structural member.
Another aspect of the present invention is to provide an extruded vehicular structural member suitable for aerospace applications having improved fracture toughness and resistance to fatigue crack growth.
Another aspect of the present invention is to provide an extruded vehicular structural member that exhibits improved fracture toughness, bearing strength, compression strength, tensile strength, and increased resistance to fatigue crack growth and corrosion.
Another aspect of this invention is to provide an aircraft structural member that can be meet the dichotomous strength and damage tolerance requirements typically found in the aerospace industry yet be light weight.
Another aspect of this invention is to provide an aircraft or vehicular structural member that can reduce the costs associated with manufacturing “traditional” aircraft or vehicular structural members.
These and other aspects will become apparent from a reading of the specification and claims and an inspection of the claims appended hereto.
a-3d depicts four (4) shapes that may be provided in a multi-alloy monolithic extrusion configuration, formed in accordance with the present invention.
a and 5b depict one embodiment of a multi-alloy monolithic extrusion including portions having an alloy selected for welding performance.
a (cross sectional view) and 11b (side view) depict one embodiment of a multi-alloy monolithic extrusion in which an alloy having improved fatigue resistance functions as crack stopper between portions of the multi-alloy monolithic extrusion having high strength.
a and 12b depict side views of embodiments of the placement of sectioned billets prior to co-extrusion, in accordance with the present invention.
The accompanying figures and the description that follows set forth this invention in its preferred embodiments. However, it is contemplated that persons generally familiar with aluminum alloy extrusions will be able to apply the novel characteristics of the structures and methods illustrated and described herein in other contexts by modification of certain details. Accordingly, the figures and the description are not to be taken as restrictive on the scope of this invention, but are to be understood as broad and general teachings. When referring to any numerical range of values, such ranges are understood to include each and every number and/or fraction between the stated range minimum and maximum. As used herein, the term “incidental impurities” refers to elements that are not purposeful additions to the alloy, but that due to impurities and/or leaching from contact with manufacturing equipment, trace quantities of such elements being no greater than 0.05 wt. % may, nevertheless, find their way into the final alloy product. Finally, for purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, and derivatives thereof shall relate to the invention, as it is oriented in the drawing figures.
The present invention discloses an aluminum multi-alloy monolithic extruded aircraft or vehicular structural member (structural member) having at least a first aluminum alloy and a second aluminum alloy. Preferably, the first and second alloy are selected to meet the performance requirements of the structure, wherein the alloy composition may be selected to provide improved fatigue toughness, bearing strength, compression strength, tensile strength, increased resistance to fatigue crack growth, corrosion and weld-ability performance. For the purposes of this disclosure, the term “multi-alloy monolithic extrusion” denotes a unitary structure composed of at least two metal alloys having a dimensionally constant cross section along the longitudinal direction of the structure, wherein the mechanical performance of the multi-alloy unitary structure, acts as a single, rigid, uniform whole.
The monolithic structural member is formed by a metallurgical fusion of the first aluminum alloy to the second aluminum alloy through an extrusion process thereby producing a structural member that is light, cost effective, and that can satisfy various strength and damage tolerance requirements. The term “metallurgical fusion” is defined as a bond formed between two metals that when mechanically tested can be characterized as having a gradual change in mechanical properties in response to an applied force across the cross-section of the structure from the first alloy to the second alloy. The mechanical testing may include peel testing, shear testing or any testing methods measuring the performance at the interface between the first and second alloy. A gradual change in mechanical properties is defined as mechanical property variation in response to an applied stress that is observed in articles having a unitary structure being free of multi-component interfaces.
In one embodiment, an Aluminum Association 7XXX series aluminum alloy in combination with an aluminum-lithium (Al—Li) alloy is a feasible combination for a wing box. Furthermore, an Aluminum Association 7XXX series aluminum alloy in combination with an Aluminum Association 6XXX series aluminum alloy is a feasible combination for a fuselage stringer. Additional multi-alloy combinations such as strength/durability and wear, low performance/high performance, and low cost/high cost can be tailored so that the extruded vehicular structural member is optimized with the best aluminum alloy that meets the design requirements and placed within the extrusion where it is needed thereby allowing a single vehicular structural member to satisfy dissimilar requirements simultaneously.
Accordingly, it is understood that the aluminum alloys used in the monolithic extruded vehicular structural member can be selected from the same alloy family, but have different property characteristics and therefore be considered distinct aluminum alloys.
In one embodiment, the first aluminum alloy and/or the second aluminum alloy is manufactured from heat treatable or non heat treatable aluminum alloys. Heat-treatable aluminum alloys are those that can be strengthened by a controlled cycle of heating and cooling. Some examples of heat treatable alloys include Aluminum Association 2XXX, 6XXX, and 7XXX series of aluminum alloys. Heat treatable aluminum alloys may provide increased strength by precipitate hardening mechanisms. A precipitate hardening composition may be an aluminum alloy whose strength characteristics may be enhanced by the formation of uniformly dispersed particles (precipitates) of a second phase within the original phase matrix, wherein the precipitates are formed using heat treatments. Non-heat treatable alloys depend on work hardening through mechanical reduction in conjunction with various annealing procedures for property development. Strength for non-heat treatable alloys such as 5XXX series is obtained by the hardening effect of the alloying elements. Additional strengthening is achieved by cold working.
In another embodiment, the first aluminum alloy and/or the second aluminum alloy is manufactured from an aluminum-lithium alloy. In one embodiment, an aluminum lithium alloy may include on the order of about 0.7 wt. % to about 2.0 wt. % Li. Preferred aluminum-lithium alloys include Aluminum Association 2099 and 2199.
Preferably, Aluminum Association 2099 is composed of less than 0.05 wt. % Si, less than 0.07 wt. % Fe, from about 2.4 wt. % to about 3.0 wt. % Cu, from about 0.10 wt. % to about 0.50 wt. % Mn, from about 0.10 wt. % to about 0.50 wt. % Mg, from about 0.40 wt. % to about 1.0 wt. % Zn, less than 0.1 wt. % Ti, from about 1.6 wt. % to about 2.0 wt. % Li, from about 0.05 wt. % to about 0.12 wt % Zr, and a balance of Al and incidental impurities. Preferably, Aluminum Association 2199 is composed of less than 0.05 wt. % Si, less than 0.07 wt. % Fe, from about 2.3 wt. % to about 2.9 wt. % Cu, from about 0.10 wt. % to about 0.50 wt. % Mn, from about 0.05 wt. % to about 0.40 wt. % Mg, from about 0.20 wt. % to about 0.9 wt. % Zn, less than 0.1 wt. % Ti, from about 0.7 wt. % to about 1.3 wt. % Li, from about 0.20 wt. % to about 0.7 wt % Ag, and a balance of Al and incidental impurities. In some preferred embodiments, Aluminum Association 2099 is utilized for high strength applications and Aluminum Association 2199 is utilized applications requiring in high damage tolerance
In yet another embodiment, the first aluminum alloy and/or the second aluminum alloys is manufactured from the Aluminum Association's 2XXX, 6XXX or 7XXX series of aluminum alloys. The principal alloying element in Aluminum Association 2XXX aluminum alloy is Cu. The principal alloying element in Aluminum Association 6XXX aluminum alloy is Si. The principal alloying element in Aluminum Association 7XXX aluminum alloy is Zn.
In yet another embodiment, the first aluminum alloy and/or the second aluminum alloy is manufactured from the Aluminum Association's 2×24, 2×26, 7×50, 7×55, 7×75, and 7×85 aluminum alloys. The principal alloying elements in Aluminum Association 2×24 aluminum alloy include Cu, preferably is an amount ranging from about 3.7 wt. % to about 4.9 wt. %; Mn, preferably in an amount ranging from about 0.15-0.9 wt. %; and Mg, preferably being about 1.2 wt. % to about 1.8 wt. %. The principal alloying elements in Aluminum Association 2×26 include Cu, preferably in an amount ranging from about 3.6 wt. % to about 4.3 wt. %; Mn preferably in an amount ranging from about 0.3-0.8 wt. %; and Mg, preferably being about 1.0 wt. % to about 1.6 wt. %.
The principal alloying elements in Aluminum Association 7×50 aluminum alloy preferably includes Zn, preferably in an amount ranging from about 5.7 wt. % to about 6.9 wt. %; Cu, preferably in an amount ranging from about 1.7 wt. % to 2.6 wt. %; and Mg, preferably in an amount ranging from about 1.9 wt. % to about 2.6 wt. %. The principal alloying elements in Aluminum Association 7×55 aluminum alloy preferably includes Zn, preferably in an amount ranging from about 7.6 wt. % to about 8.4 wt. %; Cu, preferably in an amount ranging from about 2.0 wt. % to 2.6 wt. %; and Mg, preferably in an amount ranging from about 2.1 wt. % to about 2.9 wt. %. The principal alloying elements in Aluminum Association 7×75 preferably includes Zn, preferably in an amount ranging from about 5.1 wt. % to about 6.1 wt. %; Cu, preferably in an amount ranging from about 1.2 wt. % to 2.0 wt. %; Mg, preferably in an amount ranging from about 2.1 wt. % to about 2.9 wt. %; and Cr, preferably in an amount ranging from about 0.18 wt. % to about 0.28 wt. %. The principal alloying elements in Aluminum Association 7×85 preferably includes Zn, preferably in an amount ranging from about 7.0 wt. % to about 8.0 wt. %; Cu, preferably in an amount ranging from about 1.3 wt. % to 2.0 wt. %; and Mg, preferably in an amount ranging from about 1.2 wt. % to about 2.8 wt. %.
Aluminum Association 6XXX aluminum alloy include, but are not limited to, Aluminum Association 6061, 6063, and 6013, and in some preferred applications are utilized to provide welding performance. Aluminum Association 6061 preferably includes about 0.4 wt. % to about 0.8 wt. % Si, less than 0.7 wt. % Fe, from about 0.15 wt. % to about 0.40 wt. % Cu, less than 0.15 wt. % Mn, from about 0.8 wt. % to about 1.2 wt. % Mg, from about 0.040 wt. % to about 0.35 wt. % Cr, less than 0.25 wt. % Zn, less than 0.15 wt. % Ti, and a balance of Al and incidental impurities. Aluminum Association 6063 preferably includes about 0.2 wt. % to about 0.6 wt. % Si, less than 0.35 wt. % Fe, less than about 0.10 wt. % Cu, less than 0.10 wt. % Mn, from about 0.45 wt. % to about 0.9 wt. % Mg, less than about 0.10 wt. % Cr, less than 0.10 wt. % Zn, less than 0.10 wt. % Ti, and a balance of Al and incidental impurities. Aluminum Association 6013 preferably includes from about 0.6 wt. % to about 1.0 wt. % Si, less than 0.50 wt. % Fe, from about 0.60 wt. % to about 1.1 wt. % Cu, from about 0.20 wt. % to about 0.80 wt. % Mn, from about 0.8 wt. % to about 1.2 wt. % Mg, less than about 0.10 wt. % Cr, less than 0.25 wt. % Zn, less than 0.10 wt. % Ti, and a balance of Al and incidental impurities.
In yet another embodiment, the first aluminum alloy is manufactured from the Aluminum Association's 7075 or 7475 aluminum alloy, while the second aluminum alloy is manufactured from the Aluminum Association's 2024 and 7055 aluminum alloy. Aluminum Association 7075 is an aluminum alloy, preferably including less than 0.12 wt. % Si, less than 0.15 wt. % Fe, from about 2.0 wt. % to about 2.6 wt. % Cu, less than 0.10 wt. % Mn, from about 1.9 wt. % to about 2.6 wt. % Mg; less than 0.04 wt. % Cr, from about 5.7 wt. % to about 6.7 wt. % Zn, less than 0.06 wt. % Ti, from about 0.08 to about 0.15 wt. % Zr, and a balance of Al and incidental impurities. Aluminum Association 7475 is an aluminum alloy preferably including less than 0.10 wt. % Si, less than 0.12 wt. % Fe, from about 1.2 wt. % to about 1.9 wt. % Cu, less than 0.06 wt. % Mn, from about 1.9 to about 2.6 wt. % Mg, from about 0.18 wt. % to about 0.25 wt. % Cr, from about 5.2 wt. % to about 6.2 wt. % Zn, less than 0.06 wt % Ti, and a balance of Al and incidental impurities. Aluminum Association 2024 is an aluminum alloy preferably including less than 0.5 wt. % Si, less than 0.5 wt. % Fe, from about 3.8 wt. % to about 4.9 wt. % Cu, from than 0.30 wt. % to about 0.9 wt. % Mn, from about 1.2 wt. % to about 1.8 wt. % Mg, less than 0.10 wt. % Cr, less than 0.25 wt. %, less than 0.15 wt. % Ti, and a balance of Al and incidental impurities.
In another embodiment of the present invention, the multi-alloy monolithic extrusion may be composed of at least two alloys selected from a single alloy family. For example the multi-alloy monolithic extrusion may be composed of two or more alloys within the Aluminum Association 7XXX series alloys, such as Aluminum Association 7055, 7075, or 7475; or two or more alloys within the Aluminum Association 6XXX series alloys, such as Aluminum Association 6061, 6063, or 6013; or two or more alloys within Aluminum Association 2XXX series alloys, such as Aluminum Association 2199, 2024, and 2099.
One advantage of multi-alloy monolithic extrusion composed of alloys from same Aluminum Association series (alloys having similar alloying constituents) is that the entire multi-alloy monolithic extrusion may be heat treated to substantially peak performance, since aluminum alloys having similar alloying constituents and concentrations typically benefit from similar heat treatments. In some instances, multi-alloy monolithic extrusions of alloys of differing alloying constituents and concentrations may result in different heat treatment requirements and may result in a multi-alloy monolithic extrusion in which one portion of the extrusion is not heat treated to optimum specifications.
In one embodiment, the alloy compositions within the family may be selected to provide strength or fatigue/toughness performance. Typically, strength and fatigue/toughness performance are inversely proportional, wherein an alloy having a very high strength may have lower ductility, toughness, and fatigue performance when compared to a lower strength alloy. This scenario is observable in 2XXX and 7XXX series alloys, wherein 2XXX alloys may provide toughness and fatigue performance and 7XXX alloys may provide strength. For example, in precipitate hardening compositions a high degree of strengthening precipitates can provide increased strength, but typically results in decreased ductility, toughness and fatigue performance.
The aluminum multi-alloy monolithic extruded aircraft or vehicular structural member disclosed in this invention can be aircraft structural member such as an aircraft engine beam, a landing gear beam, a wing spar, a horizontal stabilizer spar, a fuselage stringer, a top center wing box, or an extruded machined rib. In another embodiment, the aluminum multi-alloy monolithic extruded aircraft or vehicular structural member disclosed in this invention is a component for use in an automobile, motorcycle, bicycle, scooter, truck, bus, ship, submarine, tractor, or train.
FIGS. 3(a)-3(d) depict four shapes that may be formed as a multi-alloy monolithic extrusion, in accordance with the present invention. FIGS. 3(a)-3(d) depict one embodiment of a wing spar 2 composed of a first aluminum alloy 4 and a second aluminum alloy 6. The first aluminum alloy 4 could be selected from the heat treatable aluminum alloy compositions, non-heat treatable aluminum alloy compositions, and aluminum alloy compositions including lithium. The second aluminum alloy 6 could also be selected from heat treatable aluminum alloy compositions, non-heat treatable aluminum alloy compositions, and aluminum alloy compositions including lithium.
FIGS. 3(b) and 3(d) depicts one embodiment of a multi-alloy monolithic extrusion configured to provide wing spar 2 including a crack arrest feature 8. In one embodiment, the first aluminum alloy 4 and/or second aluminum alloy 6 can selected from the Aluminum Association's 2XXX, or 7XXX series of aluminum alloys. The selection of the alloys and their positioning in the multi-alloy monolithic extrusion may be determined by the mechanical performance required of the structure.
For example, in one embodiment portions of the structure requiring toughness and fatigue resistance performance, such as the crack arrest feature, may utilize an aluminum alloy within the family of Aluminum Association 2XXX series alloys, such as Aluminum Association 2199, 2024, and 2099, and portions of the structure requiring high strength may utilize an aluminum alloy within the family of Aluminum Association 7XXX series alloys, such as Aluminum Association 7×50, 7×55, 7×75, 7×85, preferably being Aluminum Association 7055, 7075 or 7475. In another embodiment, the first or second aluminum alloy 4, 6 could be an Aluminum Lithium (Al—Li) aluminum alloy. In another example, multi-alloy monolithic extrusion wing spar 2 may be composed of aluminum alloy of the same Aluminum Association series, whereas portions requiring high strength would have a higher degree of precipitate hardening constituents than portions of the structure requiring fatigue and toughness performance.
a and 5b depict a welding structure 15 formed from a multi-alloy monolithic extrusion that is configured to provide a means for welded attachment of another structure member, wherein the means for a welded attachment is provided by weldable pads 13 of a weldable alloy metallurgically fused to a base structure 14. The weldable pads 13 may be formed of a 6XXX aluminum alloy, such as 6013, 6063, or 6061, or a 7XXX alloy similar to Aluminum Association 7005. Aluminum Association 7005 typically includes less than 0.35 wt. % Si, less than 0.4 wt. % Fe, less than 0.10 wt. % Cu, from about 0.20 to about 0.7 wt % Mn, from about 1.0 wt % to about 1.8 wt % Mg, from about 0.06 wt. % to about 0.20 wt %. Cr, from about 4.0 wt. % to about 5.0 wt. % Zn, less than 0.06 Ti, from about 0.08 to about 0.025 wt. % Zr.
a and 11b depict a multi-alloy monolithic extrusion having an integral crack stopper 70. In one embodiment, an alloy composition providing crack resistance, such as Aluminum Association 2XXX series alloy, is positioned between alloy compositions providing increased strength, such as Aluminum Association 7XXX. It is noted that the above description is not limited to 2XXX, 6XXX or 7XXX alloys, as other alloys have been contemplated, and are within the scope of the present invention.
In another aspect of the present invention, a method is provided for manufacturing the above described multi-alloy monolithic extrusion. Although, the following description, discusses a bi-alloy extrusion, wherein the monolithic extrusion is composed of two alloys, the following disclosure is equally applicable to extrusions of three, four, five or greater than five alloys, so long as each billet is sectioned and machined to contact one another and joined to allow for each of the alloys to be co-extruded together.
First, the method calls for providing a first billet, which is manufactured from a first aluminum alloy, and at least a second billet, which is manufactured from a second aluminum alloy. Each of the billets have a first end, a second end, and an exterior surface. The billets are then sectioned, preferably along the billets longitudinal direction (L), in order to expose an interior surface. Preferably, the surfaces to be joined as machined substantially flat. In one embodiment, each of the first and second billets are cut in half to form half billets. The half billet formed from the first billet is hereafter referred to as the first half billet. The half billet formed from the second billet is hereafter referred to as the second half billet.
Once the first half billet is properly positioned adjacent to the second half billet, as depicted in
The third billet is then extruded through an extrusion die thereby forming the desired multi-alloy monolithic extrusion. In other words, the first and second half billets are co-extruded through the extrusion die, which metallurgically fuses the aluminum alloy used in the first half billet to the aluminum alloy used in the second half billet. The temperature of the extrusion process is selected to provide softening of the alloys in providing the metallurgical fusion bonding the alloy compositions of the multi-alloy monolithic extrusion.
In one embodiment of the disclosed method, the interior surface of the first half billet as well as the interior surface of the second half billet are flat machined prior to positioning the first half billet adjacent to the second half billet in order to ensure that the interior surface of each billet half is substantially flat. After the interior surface of each of the billet halves have been flat machined, the interior surface of the first half billet is positioned adjacent to and in contact with the interior surface of the second half billet prior to welding. In one embodiment, a clean interior surface on the sectioned billets is provided by encasing the billets and reducing moisture content through the use of desiccant.
In another embodiment, a first billet and at least a second billet are sectioned perpendicular to the longitudinally direction, wherein each billet is positioned adjacent to one another at their sectioned ends, as depicted in
Although the invention has been described generally above, the following examples are provided to further illustrate the present invention and demonstrate some advantages that arise therefrom. It is not intended that the invention be limited to the specific examples disclosed.
The multi-alloy monolithic extrusion (co-extrusion) composed of Aluminum Association 2024 and 7075 was prepared by providing one 2024 aluminum alloy billet and one 7075 aluminum alloy billet. Each of the billets were cut in half and the interior surface flat machined prior to stacking one billet half on top of the other. Once stacked, the billets were inspected to ensure that the side of each billet were adjacent to and in line with the corresponding side of the other billet. After the positioning of the billets was verified, the billet halves were tack welded at each corner (four corners) to ensure that the billets would be securely fastened to one another during the extruding process. It is noted that one skilled in the art would recognize that other methods of welding the two billets together may be utilized without departing from the teachings of this invention. The welds were belt sanded to smooth each corner and the welded billet was then extruded.
All of the aluminum alloys in
As can be seen in
The multi-alloy monolithic extrusion (co-extrusion) composed of Aluminum Association 2024 and 7075 and heat treated T73 temper was also tested for micro-hardness, in which an ingot was sectioned to allow for micro-hardness values to be measured from the 2024 alloy portions of the multi-alloy monolithic extrusion across the interface and into the 7075 alloy portions of the multi-alloy monolithic extrusion. The micro-hardness was measured in accordance with ASTM standard E92, which is the Standard Test Method for Vickers Hardness of Metallic Materials. The micro-hardness data for a 2024/7075 multi-alloy monolithic extrusions were aged to T73 temper is depicted in
The 2024/7075 multi-alloy monolithic extrusions were prepared by providing one 2024 aluminum alloy billet and one 7075 aluminum alloy billet. Each of the billets were cut in half and the interior surface flat machined prior to stacking one billet half on top of the other. Once stacked, the billets were inspected to ensure that the corners of each billet were adjacent to and in line with the corresponding corner of the other billet. After the positioning of the billets were verified, the billet halves were tack welded at each corner (four corners) to ensure that the billets would be securely fastened to one another during the extruding process. The welds were belt sanded to smooth each corner and the welded billet was then extruded.
All of the aluminum alloys in
As can be seen in
The 2024/7075 multi-alloy monolithic extrusions were prepared by providing one 2024 aluminum alloy billet and one 7075 aluminum alloy billet. Each of the billets were cut in half and the interior surface flat machined prior to stacking one billet half on top of the other. Once stacked, the billets were inspected to ensure that the corners of each billet were adjacent to and in line with the corresponding corner of the other billet. After the positioning of the billets were verified, the billet halves were tack welded at each corner (four corners) to ensure that the billets would be securely fastened to one another during the extruding process. The welds were belt sanded to smooth each corner and the welded billet was then extruded.
All of the aluminum alloys in
As can be seen in
All of the aluminum alloys in
As can be seen in
All of the aluminum alloys in
As can be seen in
Multi-alloy monolithic extrusions composed of aluminum lithium alloys, Aluminum Association 2099 and 2199, were prepared and heat treated to T8 temper. Comparative examples of single alloy extrusions of Aluminum Association 2199 and 2099 were also prepared and heat treated to T-8 temper. The 2099/2199 multi-alloy monolithic extrusions were extruded in the following manner. The press container was set at about 760 degrees Fahrenheit and the tools and billets were heated to about 790 degrees Fahrenheit. The extrusion ratio was 32:6, the ram speed was set at about 4 ipm (inches per minute), and the product speed was greater than about 9.0 fpm (feet per minute). To reach T8 temper, the billets were at an oven temperature set to 850° f. for 17 hours, followed by a solution heat treatment at a temperature on the order of about 1000° F., quenched at about room temperature, then stretched by about 3%, and aged at a temperature of about 300° F. for approximately 36 hours.
The mechanical properties of the 2099/2199 multi-alloy monolithic extrusions were measured to have a tensile yield strength (long transverse) of about 59 Ksi, an ultimate tensile strength of about 68 Ksi, and an elongation of about 13%. The comparative example of Aluminum Association 2199 had a tensile yield strength (long transverse) of about 67 Ksi, an ultimate tensile strength of about 76 Ksi, and an elongation of about 13%. The comparative example of Aluminum Association 2099 had a tensile yield strength (long transverse) of about 58 Ksi, an ultimate tensile strength of about 66 Ksi, and an elongation of about 15%.
It was observed that the interface of the aluminum lithium billets had to be controlled to ensure that moisture was minimized at the interface of the two alloys. Excess moisture disadvantageously resulted in oxidation at the interface. To reduce moisture content and the formation of oxide at the interface, a clean interior surface on the sectioned billets may be provided by encasing the billets and reducing moisture content through the use of desiccant prior to loading in the extrusion container.
Having described the presently preferred embodiments, it is to be understood that the invention may be otherwise embodied within the scope of the appended claims.
The present invention claims the benefit of U.S. provisional patent application 60/734,913 filed Nov. 9, 2005 the entire contents and disclosure of which is incorporated by reference as is fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60734913 | Nov 2005 | US |