The present invention relates to the field of reference solutions for instruments that measure analytes in biological samples, particularly to instruments that determine hematocrit levels in biological samples by measuring the resistance and/or conductivity of the samples.
In the past, it was customary for clinical chemists to measure biological analytes in serum or plasma by flame photometry, coulometry, or fluorometric titration. Hematocrit, the percentage of blood volume occupied by cells (also known as packed cell volume), is measured in whole blood by micro-centrifugation or cell counting. More recent advances in clinical instrumentation have allowed for simultaneous measurement of biological analytes and hematocrit in a single sample. One type of modern blood analyzer measures biological analytes (such as sodium, for example) by direct potentiometry and hematocrit by conductivity. These instruments vastly improve the speed at which hematocrit levels and the concentrations of biological analytes can be obtained, which can lead to improvements in patient diagnosis and care.
In order to confirm the accuracy of blood analyzer measurements, the instrument must be calibrated before use. Some reference solutions use blood cells or other blood products to approximate physiological hematocrit levels. However, blood products are expensive, must be refrigerated during shipment and storage, and are relatively unstable. Thus, a preferred reference solution would not contain blood products, but would still maintain a conductivity similar to a known hematocrit level.
A reference solution for biological analytes must contain known concentrations of each analyte, while a reference solution for hematocrit must have a conductivity similar to that of blood with a known hematocrit level. However, it is difficult to formulate an aqueous solution with physiological levels of biological analytes (such as sodium, for example) and hematocrit in the same solution, because an aqueous environment that lacks red blood cells is far more conductive than whole blood. Accordingly, an additive, such as inert particles or non-conductive water-soluble chemicals, must be added to achieve the necessary conductivity.
Existing reference solutions include high concentrations of conductivity-reducing additives—often up to 30-40% of the total volume of the solution—in order to achieve a conductivity representative of hematocrit levels in whole blood. However, large amounts of additives can drive up the cost of the reference solution, particularly in the case of relatively expensive inert particle additives. In addition, high concentrations of additives can lead to unwanted side-effects, including interference with other analytes in the reference solution, high viscosity, reduced shelf life, and precipitation during shipment and storage. Furthermore, certain water-soluble chemical additives can permeate some sensors within the blood analyzer (such as an oxygen sensor, for example) and reduce the sensitivity and selectivity of the sensors.
Because of these problems, existing reference solutions cannot effectively calibrate a blood analyzer for both hematocrit and biological analytes simultaneously. As a result, at least two separate reference solutions must be used to calibrate a blood analyzer, which reduces the overall speed and increases the cost of operating such instruments.
The present invention provides a reference solution for use in instruments that determine hematocrit levels in biological samples by measuring the conductivity of the biological samples. A reference solution according to the invention achieves conductivities representative of known hematocrit levels in blood, while maintaining tolerable levels of interference with the measurement of other analytes in the reference solution. In addition, a reference solution according to the invention is not highly viscous, does not form a precipitate during shipment or storage, and is more stable at room temperature than reference solutions that contain blood products. A reference solution according to the invention can be used to simultaneously calibrate an instrument that analyzes biological samples for hematocrit and biological analytes.
In general, in one aspect, the invention provides a reference solution for use in instruments that analyze biological samples that includes at least two of a water soluble polymer, a glycol, and a polysaccharide. The reference solution has a conductivity that corresponds to the conductivity of a known hematocrit level.
Embodiments of this aspect of the invention may have the following features. The water soluble polymer may be a non-ionic species, such as polyethylene glycol, for example. The glycol may be ethylene glycol. The polysaccharide may be a non-ionic species, such as dextran, for example. The water soluble polymer, glycol, and polysaccharide may be present in such amounts as to provide a solution that has a conductivity that corresponds to the known physiological hematocrit level in human blood. Alternatively, the solution may have a conductivity that is less than or greater than the known physiological hematocrit level in human blood.
The reference solution may also contain one or more analytes, which may be present in concentrations that correspond to the physiological concentrations of the analytes in human blood. The one or more analytes may be ions, such as hydrogen, sodium, potassium, calcium, chloride, bicarbonate, lithium, magnesium, and ammonium. The one or more analytes may be biological metabolites, such as glucose, lactate, urea, creatine, and creatinine. The one or more analytes may be gases, such as oxygen and carbon dioxide. Alternatively, the one or more analytes may be a mixture of ions, biological metabolites, and/or gases. The reference solution may also contain a buffer solution, a preservative, a stabilizer, a surfactant, a dye, and/or an anticoagulant. The biological sample that the instrument analyzes may be blood.
In general, in another aspect, the invention provides a reference solution for use in instruments that analyze biological samples that includes polyethylene glycol, ethylene glycol, and dextran. The reference solution has a conductivity that corresponds to the conductivity of a known hematocrit level. Embodiments of this aspect may include one or more analytes, as described above.
In general, in yet another aspect, the invention provides a reference solution for use in instruments that analyze biological samples that includes polyethylene glycol and dextran. The reference solution has a conductivity that corresponds to the conductivity of a known hematocrit level. Embodiments of this aspect may include one or more analytes, as described above.
In general, in still another aspect, the invention provides a method for calibrating an instrument that analyzes biological samples. The method involves providing a reference solution that contains at least two of a water soluble polymer, a glycol, and a polysaccharide, and has a conductivity that corresponds to the conductivity of a known hematocrit level, as described above. The reference solution is introduced to the instrument, and a signal is obtained that represents the measured conductivity value. The instrument is then adjusted so that the measured conductivity value equals the known conductivity of the reference solution.
In general, in another aspect, the invention provides a method for calibrating an instrument that analyzes biological samples. The method involves providing a reference solution that contains one or more analytes at known concentrations, at least two of a water soluble polymer, a glycol, and a polysaccharide, and has a conductivity that corresponds to the conductivity of a known hematocrit level, as described above. The reference solution is introduced to the instrument, and signals are obtained that represent the measured conductivity value and the concentrations of the one or more analytes. The instrument is then adjusted so that the measured conductivity value equals the known conductivity of the reference solution, and the measured concentration values equal the known concentration of the one or more analytes in the reference solution.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and the claims.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
In general, the present invention provides a reference solution for calibrating instruments that determine hematocrit levels in biological samples. In one aspect according to the invention, the reference solution is used to calibrate an instrument that determines the hematocrit level of a blood sample (a “blood analyzer”) by measuring the conductivity of the sample.
The hematocrit level (H) of a sample is related to its conductivity (C) by equation 1:
C=C0(1−H) (1)
where C0 is the conductivity when H=0. A blood analyzer obtains conductivity values by measuring the resistance of a sample (where resistance R is related to conductivity C by R=1/C), then comparing the result with resistance values for two standard solutions of known conductivities. The hematocrit level of a sample (Hx) can be determined by measuring the resistance (Rx) of the sample and comparing it to the known resistance (RA) and hematocrit level (HA) of a standard A using equation 2:
Rx−RA=R0[(1/(1−Hx)−1/(1−HA)] (2)
where R0 is the resistance when H=0.
To determine R0, the resistance (RB) of a second standard B having a known hematocrit level (HB) must be measured. Substituting the resistance and hematocrit values for both standards A and B into equation 2 yields R0. Once R0 is known, the hematocrit level (Hx) of a sample can be determined by measuring the sample's resistance (Rx), and substituting the result, along with the R0, RA, and HA values previously determined, into equation 2.
However, the hematocrit level is not the only factor that affects the conductivity of a blood sample. For example, the conductivity of a blood sample increases as the concentration of electrolytes (such as sodium, for example) increases. Accordingly, hematocrit values determined by blood analyzers must be corrected to account for other blood components. It has been shown that correcting a measured hematocrit value for the concentration of sodium in the sample yields an accurate hematocrit value. Thus, the true hematocrit level (Hx*) of a sample can be determined using equation 3:
1/(1−Hx*)=[1/(1−Hx)](Nax/NaA) (3)
where NaA is the sodium concentration of standard A and Nax is the sodium concentration of the sample. In a particular embodiment according to the invention, software may be included in the blood analyzer to convert resistance values measured by the analyzer to hematocrit levels by using the above equations.
In order to ensure the accuracy of hematocrit values obtained by a blood analyzer, the instrument must be calibrated with a reference solution before use, and possibly periodically during use. In one embodiment of the invention, a reference solution includes at least two of a water soluble polymer, a glycol, and a polysaccharide in such proportions to yield a solution with a conductivity that corresponds to a known hematocrit level. Examples of this embodiment include reference solutions that contain: a water soluble polymer, a glycol, and a polysaccharide; a water soluble polymer and a glycol; a water soluble polymer and a polysaccharide; and a glycol and a polysaccharide. In another embodiment of the invention, a reference solution contains a polysaccharide in such a proportion to yield a solution with a conductivity that corresponds to a known hematocrit level.
In some embodiments of the invention, the water soluble polymer is non-ionic. Examples of suitable water soluble polymers include polyethylene glycol and polyvinyl pyrrolidone, for example. The polyethylene glycol can have an average molecular weight ranging from about 1000 to about 4000, but an average molecular weight of about 2000 is preferred. Examples of suitable glycols include ethylene glycol, propylene glycol, dipropylene glycol, and glycerol, for example. In some embodiments of the invention, the polysaccharide is non-ionic. An example of a suitable non-ionic polysaccharide is dextran. The dextran can have an average molecular weight ranging from about 8000 to about 40,000, but an average molecular weight of about 10,000 is preferred.
The proper ratio of the water soluble polymer, glycol, and polysaccharide is crucial in achieving the desired conductivity of the solution, while at the same time minimizing interference with other sensors in the blood analyzer. For example, in a particular embodiment, the reference solution includes 9-15% polyethylene glycol (MW 2000), 6-10% ethylene glycol, and 6-10% dextran (MW 10,000), by weight. One example of this embodiment is a reference solution containing 90 g/L polyethylene glycol (MW 2000), 90 g/L ethylene glycol, and 60 g/L dextran (MW 10,000). Another example of this embodiment is a reference solution containing 130 g/L polyethylene glycol (MW 2000), 70 g/L ethylene glycol, and 100 g/L dextran (MW 10,000).
In another particular embodiment, the reference solution contains 7-11% polyethylene glycol (MW 2000) and 5-9% dextran (MW 10,000) by weight. One example of this embodiment is a reference solution containing 90 g/L polyethylene glycol (MW 2000) and 60 g/L dextran (MW 10,000).
In some embodiments according to the invention, the conductivity of the reference solution corresponds to a hematocrit level that falls within the range of normal human hematocrit levels. For example, in men 19 years or older, the normal range of hematocrit is between 41 and 50, while in women 19 years or older, the normal range is between 36 and 44. In other embodiments, the conductivity of the reference solution corresponds to hematocrit levels that are greater than or less than the range of normal human hematocrit levels.
In some embodiments according to the invention, the reference solution contains one or more analytes that could be found in body fluids in addition to the water soluble polymer, glycol, and polysaccharide. Examples of analytes include, but are not limited to, ions (such as hydrogen, sodium, potassium, calcium, chloride, bicarbonate, lithium, magnesium, and ammonium, for example), biological metabolites (such as glucose, lactate, urea, creatine, and creatinine, for example), and gases (such as oxygen and carbon dioxide, for example). Examples 1-3 below illustrate examples of suitable reference solution components and their respective proportions.
In other embodiments of the invention, the reference solution may contain one or more pH buffer solutions, preservatives, stabilizers, surfactants, dyes, and/or anticoagulants. Examples of a suitable pH buffers are 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 3-(N-morpholino) propanesulfonic acid (MOPS), N-tris-(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES), N-tris-(hydroxymethyl)methyl glycine (TRICINE), and N,N-bis-(2-hydroxyethyl) glycine (BICINE). Preservatives include the biocide methylisothiazolinone (MIT) and formaldehyde, for example. Stabilizers serve to stabilize the other reactants in the reference solution and can include chelating or sequestering agents, for example. Examples of stabilizers include calcium chelating or sequestering agents (such as α-amino acids, α-hydroxy acids, dicarboxylic acids, and polycarboxylic acids, for example) and cations that complex with carbonate ion (such as magnesium and choline, for example). Surfactants include, but are not limited to, non-ionic surfactants. Dyes, such as food colorants, may be added in low concentrations to help identify the contents of the solution, or in high concentrations to simulate the color of hemoglobin. An example of a suitable anticoagulant is sodium heparin.
A reference solution according to the invention may be pasteurized prior to introduction to an instrument. Typical pasteurization conditions include, for example, heating to 55° C. for 16 hours, heating to 65° C. for 8 hours, heating to 75° C. for 4 hours, heating to 85° C. for 2 hours, or heating to 95° C. for 1 hour. Preferably, the solution is pasteurized after it has been added to the ampoule or container that will be introduced to the instrument. Pasteurization can stabilize a reference solution according to the invention by removing contaminants that react with oxygen and by removing neutral organic compounds that are readily oxidized to organic acids.
Another aspect of the invention provides a method for calibrating an instrument that measures hematocrit levels in biological samples obtained from a patient. The instrument may be a blood analyzer—for example, the GEM Premier 3000 manufactured by Instrumentation Laboratory Company (Lexington, Mass.)—that determines hematocrit levels in a biological sample by measuring the conductivity of the sample. Referring to
Referring to
Referring again to
Referring again to
In one embodiment according to the invention, the method of calibration described above is repeated with a second reference solution that includes a combination of at least two of a water soluble polymer, a glycol, and a polysaccharide in such proportions to yield a solution with a conductivity that corresponds to a different known hematocrit level than the first reference solution. Additionally, the method of calibration may be repeated any number of times with reference solutions that correspond to any number of different known hematocrit levels.
Referring still to
In one embodiment according to the invention, the method of calibration described above is repeated with a second reference solution that includes one or more analytes in addition to a combination of at least two of a water soluble polymer, a glycol, and a polysaccharide in such proportions to yield a solution with a conductivity that corresponds to a different known hematocrit level than the first reference solution. Additionally, the method of calibration may be repeated any number of times with reference solutions that correspond to any number of different known hematocrit levels.
A reference solution according to the invention can be stored in any type of container or packaging known in the art, including, but not limited to, polyethylene bottles, glass vials, glass ampoules, and foil laminate pouches. Examples of suitable containers are described in U.S. Pat. No. 6,136,607, the entire disclosure of which is incorporated by reference herein.
In addition to being used as a calibrating solution, which is used to set the response level of instrument sensors as described above, a reference solution according to the invention may be used as a control or validating solution, which is used to verify the accuracy and reliability of the instrument and the assay. The control solution is introduced to an instrument, and conductivity and/or analyte concentration values are obtained. The measured values are then compared against the known conductivity and/or concentration values to validate that the instrument and assay are performing as expected.
The following examples are intended to illustrate, but not limit, the invention.
A reference solution was formulated according to Table 1 below:
The reference solution was introduced to a blood analyzer containing an electrode card equipped with sensors to detect pH, carbon dioxide (CO2), oxygen (O2), sodium (Na), potassium (K), calcium (Ca), glucose (Glu), lactate (Lac), and hematocrit (Hct). Three hematocrit values were obtained, along with three concentration values for each analyte. After the final measurement, the electrode card was replaced and the procedure was repeated with a new electrode card containing the same type of electrodes. In some instances, two measurements were recorded with each electrode card, and in others one measurement was recorded. The experimental results for each of the nine analytes measured by 25 different electrode cards are summarized in
A reference solution was formulated according to Table 2 below:
To predict the room temperature stability of the solution, accelerated stability studies were performed as described below.
The reference solution was introduced to a blood analyzer containing an electrode card equipped with sensors to detect pH, carbon dioxide (CO2), oxygen (O2), sodium (Na), potassium (K), calcium (Ca), glucose (Glu), lactate (Lac), and hematocrit (Hct). Twelve hematocrit values were obtained, along with twelve concentration values for each analyte. The average of these values is reported in the time=0 row of
Aliquots of the solution were stored at 5° C., 25° C., 35° C., and 45° C. After two weeks, samples of the reference solutions stored at 5° C. and 45° C. were re-equilibrated to ambient temperature and introduced to the blood analyzer to obtain hematocrit and analyte concentration values. The procedure was repeated two additional times, yielding three sets of values for each solution. The average of these values is reported in the time=2 weeks row of
The procedure was repeated at 2, 4, 6, 8, 9, 13, 16, and 20 weeks for the solution stored at 5° C. For the aliquots stored at elevated temperatures, once the value for any analyte deviated from the time=0 value by more than 1.5 times the acceptable range, testing on the solution was halted and the next lower temperature was tested. Accordingly, the reference solution stored at 45° C. was tested at 2 and 4 weeks, the 35° C. solution was tested at 4, 6, and 8 weeks, and the 25° C. solution was tested at 9, 13, 16, and 20 weeks. The results of these experiments are summarized in
The projected room temperature shelf life of the solution was determined from the data in
Second, the predicted shelf life of the solution stored at 5° C. was estimated using the “10° C. rule.” The change in pO2 values for each of the solutions stored at 25° C., 35° C., and 45° C. were plotted against time, and the time-to-failure (i.e., the point at which the pO2 value fell outside the acceptable range) was determined for each temperature. The ratio of the time-to-failure values between 35° C. (3.52 weeks) and 45° C. (0.83 weeks) was 4.2, and the ratio between 25° C. (13.5 weeks) and 35° C. (3.52 weeks) was 3.8, yielding an average time-to-failure ratio of 4.0 for each 10° C. change in temperature. In other words, for every 10° C. change in storage temperature, the time-to-failure for the solution changes by a factor of four. Thus, the predicted time-to-failure of the solution stored at 5° C. is 216 weeks, based on a time-to-failure value of 13.5 weeks for the solution stored at 25° C.
A reference solution was formulated according to Table 3 below:
Accelerated stability studies on the solution were conducted as described above. First, aliquots of the solution stored at 5° C. and 25° C. were tested as above at 4, 6, and 12 weeks. The results of this study are summarized in
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
3658478 | Spergel et al. | Apr 1972 | A |
3723281 | Wise | Mar 1973 | A |
3796634 | Haynes et al. | Mar 1974 | A |
3915829 | Krebs | Oct 1975 | A |
3920580 | Mast | Nov 1975 | A |
3977995 | Louderback et al. | Aug 1976 | A |
4179349 | Park | Dec 1979 | A |
4188465 | Schneider et al. | Feb 1980 | A |
4214968 | Battaglia et al. | Jul 1980 | A |
4219440 | Runck et al. | Aug 1980 | A |
4271474 | Belanger et al. | Jun 1981 | A |
4355105 | Lantero, Jr. | Oct 1982 | A |
4361539 | Weinberg et al. | Nov 1982 | A |
4390627 | Lantero, Jr. | Jun 1983 | A |
4401548 | Brezinski | Aug 1983 | A |
4431507 | Nankai et al. | Feb 1984 | A |
4481804 | Eberhard et al. | Nov 1984 | A |
4551482 | Tschang et al. | Nov 1985 | A |
4654127 | Baker et al. | Mar 1987 | A |
4670127 | Ritter et al. | Jun 1987 | A |
4686479 | Young et al. | Aug 1987 | A |
4713165 | Conover et al. | Dec 1987 | A |
4734184 | Burgess et al. | Mar 1988 | A |
4755461 | Lawson et al. | Jul 1988 | A |
4760024 | Lantero, Jr. | Jul 1988 | A |
4810351 | Chapoteau et al. | Mar 1989 | A |
4818361 | Burgess et al. | Apr 1989 | A |
4818365 | Kinlen et al. | Apr 1989 | A |
4871439 | Enzer et al. | Oct 1989 | A |
4908117 | Kinlen et al. | Mar 1990 | A |
4936975 | Shibata et al. | Jun 1990 | A |
4945062 | Chiang | Jul 1990 | A |
4950378 | Nagata | Aug 1990 | A |
4973394 | Ross et al. | Nov 1990 | A |
4975647 | Downer et al. | Dec 1990 | A |
5013666 | Chiang | May 1991 | A |
5061631 | Calabrese | Oct 1991 | A |
5067093 | Przybylowicz et al. | Nov 1991 | A |
5070023 | Calabrese | Dec 1991 | A |
5103179 | Thomas et al. | Apr 1992 | A |
5132345 | Harris et al. | Jul 1992 | A |
5162077 | Bryan et al. | Nov 1992 | A |
5200051 | Cozzette et al. | Apr 1993 | A |
5212050 | Mier et al. | May 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5286364 | Yacynych et al. | Feb 1994 | A |
5326449 | Cunningham | Jul 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5338435 | Betts et al. | Aug 1994 | A |
5342498 | Graves et al. | Aug 1994 | A |
5352349 | Inamoto et al. | Oct 1994 | A |
5370783 | Carlson et al. | Dec 1994 | A |
5387329 | Foos et al. | Feb 1995 | A |
5403451 | Riviello et al. | Apr 1995 | A |
5405510 | Betts et al. | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5505828 | Wong et al. | Apr 1996 | A |
5540828 | Yacynych | Jul 1996 | A |
5541097 | Lantero et al. | Jul 1996 | A |
5558985 | Chiang et al. | Sep 1996 | A |
5605837 | Karimi et al. | Feb 1997 | A |
5653862 | Parris | Aug 1997 | A |
5705482 | Christensen et al. | Jan 1998 | A |
5780302 | Conlon et al. | Jul 1998 | A |
5798030 | Raguse et al. | Aug 1998 | A |
5849517 | Ryan | Dec 1998 | A |
5972199 | Heller et al. | Oct 1999 | A |
6030827 | Davis et al. | Feb 2000 | A |
6051389 | Ahl et al. | Apr 2000 | A |
6123820 | Bergkuist et al. | Sep 2000 | A |
6133229 | Gibson et al. | Oct 2000 | A |
6136607 | Conlon et al. | Oct 2000 | A |
6136960 | Chait et al. | Oct 2000 | A |
6143545 | Clausen et al. | Nov 2000 | A |
6174728 | Ben-David et al. | Jan 2001 | B1 |
6200947 | Takashima et al. | Mar 2001 | B1 |
6214185 | Offenbacher et al. | Apr 2001 | B1 |
6251684 | Buhl et al. | Jun 2001 | B1 |
6337189 | Ryan | Jan 2002 | B1 |
6413396 | Yang et al. | Jul 2002 | B1 |
6478950 | Peat et al. | Nov 2002 | B1 |
6482416 | Munn et al. | Nov 2002 | B2 |
6531317 | Guirguis et al. | Mar 2003 | B2 |
6652720 | Mansouri et al. | Nov 2003 | B1 |
6872297 | Mansouri et al. | Mar 2005 | B2 |
7022219 | Mansouri et al. | Apr 2006 | B2 |
Number | Date | Country |
---|---|---|
0 094 677 | Nov 1983 | EP |
0 125 136 | Nov 1984 | EP |
0 133 531 | Feb 1985 | EP |
0 138 150 | Apr 1985 | EP |
0 362 032 | Apr 1990 | EP |
0 388 017 | Sep 1990 | EP |
0 654 664 | May 1995 | EP |
0 771 867 | May 1997 | EP |
0 772 041 | May 1997 | EP |
0 872 726 | Oct 1998 | EP |
0 909 952 | Apr 1999 | EP |
2792726 | Oct 2000 | FR |
2194843 | Mar 1988 | GB |
60155959 | Aug 1985 | JP |
01028555 | Jan 1989 | JP |
9321533 | Oct 1993 | WO |
WO 9406019 | Mar 1994 | WO |
9419683 | Sep 1994 | WO |
9419684 | Sep 1994 | WO |
9715827 | May 1997 | WO |
WO 0142473 | Jun 2001 | WO |
0165248 | Sep 2001 | WO |
02097419 | Dec 2002 | WO |
04072606 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040209371 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
60432373 | Dec 2002 | US |