Multi-antenna for an implantable medical device

Information

  • Patent Grant
  • 8369961
  • Patent Number
    8,369,961
  • Date Filed
    Wednesday, September 23, 2009
    15 years ago
  • Date Issued
    Tuesday, February 5, 2013
    11 years ago
Abstract
A system for enabling telemetry in implantable medical devices is provided. An implantable medical device has radio-frequency telemetry capabilities. The device includes a housing and electronic circuitry contained within the housing. The device also includes an array of antennas connected to the electronic circuitry. According to various embodiments, the array and circuitry are adapted to facilitate far-field transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. Individual antenna elements in the array are connected simultaneously or in a mutually exclusive manner to electronic circuitry, according to various embodiments. Individual antenna element geometries are sized to optimize individual antennas each for a different range of operating frequencies, according to various embodiments. Other aspects and embodiments are provided herein.
Description
TECHNICAL FIELD

This disclosure relates to implantable medical devices, particularly systems for enabling telemetry in implantable medical devices.


BACKGROUND

Certain implantable medical devices (IMDs) have the capability to communicate data with an external communication, monitoring or control device via a telemetry link. Examples include cardiac rhythm management devices such as pacemakers and implantable cardioverters/defibrillators, and neurostimulators. Data typically transmitted between an external device and an IMD includes operating parameters, stimulus and sensing modes and physiological data.


In previous telemetry systems, the IMD and the external device communicated by generating and sensing a modulated magnetic field between the devices, with the antennas of the respective devices inductively coupled together and adapted for near-field communication. The external device included a wand having an antenna, and the wand had to be in close proximity to the IMD, typically within a few inches, in order for communications to take place.


Thus, there is a need for systems for enabling longer distance, higher data rate telemetry in implantable medical devices.


SUMMARY

Disclosed herein, among other things, is an implantable medical device having radio-frequency telemetry capabilities. The device includes a housing and electronic circuitry contained within the housing. The device also includes two or more antennas connected to the electronic circuitry. According to various embodiments, the antennas and circuitry are adapted to facilitate transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. Individual antenna element geometries are sized to optimize individual antennas each for a different range of operating frequencies and/or termination media, according to various embodiments. The antenna is adapted for far-field communication, according to various embodiments.


A device embodiment includes a housing and electronic circuitry contained within the housing. The device also includes an array of antennas connected to the electronic circuitry. According to various embodiments, the array and circuitry are adapted to facilitate transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. Individual antenna elements in the array are connected in a mutually exclusive manner to electronic circuitry having a single transmit/receive antenna port using a switch, according to various embodiments. The antenna is adapted for far-field communication, according to various embodiments.


One aspect of this disclosure relates to a method for making an IMD having radio-frequency telemetry capabilities. According to various embodiments, the method includes forming an antenna assembly, including forming an array of antennas adapted to facilitate transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. The method embodiment also includes installing the antenna assembly in an implantable medical device. The method embodiment further includes connecting the antenna assembly to electronic circuitry within the implantable medical device.


This Summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their legal equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of an implantable medical device having multiple radio-frequency telemetry antennas, according to one embodiment.



FIG. 2A illustrates a side view of an implantable medical device having multiple radio-frequency telemetry antennas in a header, according to one embodiment.



FIG. 2B illustrates a side view of an implantable medical device having radio-frequency telemetry antennas in a header and in a compartment, according to one embodiment.



FIG. 3A illustrates a radio frequency antenna array for an implantable medical device having switched diversity, according to one embodiment.



FIG. 3B illustrates a radio frequency antenna phased array for an implantable medical device, according to one embodiment.



FIG. 3C illustrates a radio frequency antenna array for an implantable medical device having full diversity, according to one embodiment.



FIG. 4 illustrates a block diagram of a system with an IMD having radio-frequency telemetry capabilities, according to one embodiment.



FIG. 5 illustrates a block diagram of an external communication, monitoring or control device such as illustrated in the system of FIG. 4 or other external device to communicate with the IMD(s), according to one embodiment.



FIG. 6 illustrates a flow diagram of a method for making an IMD having multiple radio-frequency telemetry antennas, according to one embodiment.





DETAILED DESCRIPTION

The following detailed description refers to the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.


The present disclosure provides a system for enabling radio-frequency telemetry in implantable medical devices (IMD). Examples of IMDs include, but are not limited to: cardiac rhythm management devices such as pacemakers and implantable cardioverters/defibrillators; passive implantable monitoring devices; peripheral devices such as weight scales or blood pressure monitors; and neurostimulators. Multiple antennas, or antenna arrays, for use with an IMD are provided. Individual antenna elements in the array are connected in a mutually exclusive manner to electronic circuitry having a single transmit/receive antenna port using a switch, according to various embodiments. Additionally, antenna configurations having switched diversity, phased array, or full diversity can be provided. The present disclosure provides: greater range for reliable, high-speed communication with an IMD; more uniform radiation performance, independent of device orientation or surroundings; improved tuning for specific media; and consistent operation across a broad range of frequencies and dielectric terminations.


Implantable Medical Devices



FIG. 1 illustrates a block diagram of an implantable medical device having multiple radio-frequency telemetry antennas, according to one embodiment. The device 100 includes a housing 102 and electronic circuitry 104 contained within the housing. The device also includes an array of antennas 106 connected to the electronic circuitry 104. According to various embodiments, the array 106 and circuitry 104 are adapted to facilitate far-field transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. Individual antenna elements in the array are connected simultaneously or in a mutually exclusive manner to electronic circuitry having a single transmit/receive antenna port using a switch, according to various embodiments. The antennas in the array of antennas may include a variety of different antenna element geometries, such as helical, loop, serpentine, inverted F, or other appropriate configuration. According to an embodiment, two or more of the antennas in the array have identical antenna element geometries. The antennas in the array may operate independently or simultaneously.


Individual antenna elements in the array are connected in a mutually exclusive manner to electronic circuitry having a single transmit/receive antenna port using a switch, according to various embodiments. This configuration has a switched diversity. The switch may include a mechanical switch or an electrical switch, according to various embodiments. The state of the switch (open or closed) can be changed to minimize an observed error rate or to restore communication upon loss of radio frequency communication (using logic to sequence a pre-determined order of states until communication is restored), in some embodiments. According to one embodiment, the array includes a photochemically-etched metallization pattern on a planar dielectric substrate.


According to various embodiments, individual antenna elements in the array are each connected to electronic circuitry having a single transmit/receive antenna port via inline phase shifting elements, such that each antenna element transmits/receives a proportion of radio-frequency energy to the electronic circuitry with a phase shift. This configuration is considered a phased array. In one embodiment, the phase shift for each antenna element in the array can be fixed to establish a desired shape of a transmit/receive spatial pattern. The phase shift for each antenna element in the array can also be variable and controlled by logic to dynamically alter a shape of a transmit/receive spatial pattern, according to an embodiment. In the variable phase shift embodiment, logic can be used to alter the relative phase shift of each antenna element, and scanning is performed according to a fixed sequence of phases. Logic can also be used to alter relative phases of each antenna element taking into account an observed bit, frame or packet error rate, and selecting the state, or beam-steering, to minimize an observed error rate.


Individual antenna elements in the array are each connected to electronic circuitry having multiple transmit/receive antenna ports, such that each antenna element is capable of operating independently, according to various embodiments. This configuration has full diversity. According to one embodiment, each antenna element in the array is switched by logic according to a fixed sequence of states. According to another embodiment, each antenna element in the array is phase-shifted by logic according to a fixed sequence of states. According to a further embodiment, each antenna element in the array is switched by logic to minimize an observed error rate. Each antenna element in the array is phase-shifted by logic to minimize an observed error rate, according to an embodiment.


A device embodiment includes a housing and electronic circuitry contained within the housing. The device also includes two or more antennas connected to the electronic circuitry. According to various embodiments, the antennas and circuitry are adapted to facilitate far-field transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies. In various embodiments, the specified carrier frequency includes frequencies within the range from 300 MHz to 1 GHz. The antenna can be scaled for other frequency ranges, in various embodiments. For example, frequencies in S-band (ranging from 2.0-4.0 GHz) or frequencies in X-band (ranging from 8.0-12.0 GHz) can be used as the carrier frequency, according to various embodiments.


The individual antennas may have the same or different geometries, according to various embodiments. Individual antenna element geometries are sized to optimize individual antennas each for a different range of operating frequencies, according to various embodiments. For example, an implantable medical device may require operation in multiple independent frequency bands. According to an embodiment, individual antenna element geometries are sized to optimize individual antennas each for a different termination medium. Examples of termination media include air, muscle tissue, and fatty tissue.



FIGS. 2A and 2B depict dipole antenna configurations for implantable medical devices. FIG. 2A illustrates a side view of an implantable medical device having multiple radio-frequency telemetry antennas in a header, according to one embodiment. The depicted device 200 has a first antenna 210 and a second antenna 212 in a header 202. The header can be adapted to connect to one or more leads having one or more electrodes adapted to deliver electrical therapy. FIG. 2B illustrates a side view of an implantable medical device having radio-frequency telemetry antennas in a header and in a compartment, according to one embodiment. The device 250 has a first antenna 262 residing entirely in a header 252 and a second antenna 260 having at least a portion in a compartment 254 on the side of the device housing. Other numbers of antennas and antenna configuration are within the scope of the disclosure.


According to one embodiment, the compartment can be partially or completely comprised of a dielectric material 255. The dielectric material 255 in the compartment can be the same or different than the dielectric material 257 in the device header. According to an embodiment, the dielectric material 255 in the compartment has a higher relative dielectric constant to facilitate more efficient coupling of radiation into a surrounding implant medium of high dielectric constant material, such as when the device is implanted in muscle tissue. According to various embodiments, the dielectric material can include a sleeve of alumina, a sleeve of a ceramic, or a high-dielectric constant liquid in a sleeve surrounding the antenna. The dielectric materials need not be high-dielectric constant materials, according to various embodiments. In various embodiments, the dielectric material surrounding the antenna may include an overmold dielectric material, medical adhesive backfill dielectric material, or circuit board dielectric material. When discussing dielectric material, the dielectric constant “k” is used to describe the relative permittivity of the material. For the purposes of this disclosure, a material with a dielectric constant above 4.0 (the dielectric constant of silicon dioxide) is considered a high dielectric constant material.


The device also includes a feed conductor 261 adapted to provide an electrical connection between the electronic circuitry and the antennas, according to various embodiments. In addition, the feed conductor 261 can be adapted to connect to one of the antennas at a point along the antenna selected for optimal transmitting and receiving of radio-frequency energy at a specified frequency, or over a specified range of frequencies.


The device also includes a return structure 417 (FIG. 4) attached to one of the antennas, the return structure 417 (FIG. 4) adapted to provide a conductive return path connected to the electronic circuitry or the device housing, according to various embodiments. In one embodiment, the return structure 417 (FIG. 4) can be connected only to the antenna to provide a capacitive return path through reactive coupling to a nearby conductive grounding structure 419 (FIG. 4) connected to the electronic circuitry or the housing. The return structure 417 (FIG. 4) can include a conductor suspended in a dielectric a predetermined distance from the device housing to prevent high-voltage arc-over during therapy delivery, and positioned to maximize the reactive coupling of the radio frequency energy from the return structure 417 (FIG. 4) to the housing forming a low impedance path over a selected range of frequencies. The feed and return structures, which provide electrical connection between the antennas and the electronic circuitry in the housing, may be comprised of linear segments, plates, or other suitable geometry. The device also includes a frequency selective isolation transformer adapted to isolate the feed conductor and the return structure from therapy voltages, according to various embodiments. According to one embodiment, the device also includes a switch adapted to isolate the feed conductor and the return structure from therapy voltages.


According to various embodiments, the compartment 254 includes a first dielectric material 255 and the header 252 includes a second dielectric material 257. The first and second dielectric material 255, 257 may be the same or a different material. According to various embodiments, the first dielectric material 255 can include a sleeve of alumina, a sleeve of a ceramic, or a high-dielectric constant liquid in a sleeve surrounding the antennas. The dielectric materials need not be high-dielectric constant materials, according to various embodiments. In various embodiments, the dielectric material surrounding the antenna may include an overmold dielectric material, medical adhesive backfill dielectric material, or circuit board dielectric material.


The antennas can be made of formed, rolled, stamped or cast metal or conductive composite material and may be a wire, band/ribbon, or hollow structure. The antenna housing or compartment can be formed, molded, machined or cast plastic or composite material. The antennas and their housing can be mounted internally or externally in either an implantable device or an external communication device, such as the programmer of FIG. 5, below. The antenna structure for each antenna can be end-fed in the header or at the base, or any other penetration through the device housing. The antennas can be fed at their end or along their length, and can contain an open or shunt stub termination to the housing or other ground connection. The return path can be capacitive or conductive, and the antennas may include features to enhance capacitive coupling. The antennas can be fed by a waveguiding structure and this feed may include high-voltage isolation.



FIG. 3A illustrates a radio frequency antenna array for an implantable medical device having switched diversity, according to one embodiment. The array 300 includes N discrete antennas, where N is greater than or equal to two. The antenna array may include one or more patch, ribbon, wire, helical, or inverted F type individual antennas. Other types of antennas may be used in the antenna array without departing from the scope of the disclosure. Radio frequency transceiver circuitry 302 is connected to the array via a switch 304, which may be mechanical or electrical. The switch 304 is controlled by logic 306 to determine which of the antennas in the array is connected to the transceiver circuitry 302. Logic 306 may control the switch 304 based on a programmed sequence, a predetermined order, or a closed loop system based on observed environmental conditions.



FIG. 3B illustrates a radio frequency antenna phased array for an implantable medical device, according to one embodiment. The array 320 includes N discrete antennas, where N is greater than or equal to two. The antenna array may include one or more patch, ribbon, wire, helical, or inverted F type individual antennas. Other types of antennas may be used in the antenna array without departing from the scope of the disclosure. Radio frequency transceiver circuitry 322 is connected to the array via logic 326 according to phase feeds 328. Variable phase feeds to each antenna in the array provide for more than one antenna to be actively transmitting or receiving at the same time, which enables the beam-steering discussed above. According to an embodiment, the logic alters relative phase shift of at least one antenna element to restore communication upon loss of radio frequency communication. The array includes a photochemically-etched metallization pattern on a planar dielectric substrate, according to an embodiment.



FIG. 3C illustrates a radio frequency antenna array for an implantable medical device having full diversity, according to one embodiment. The array 340 includes N discrete antennas, where N is greater than or equal to two. The antenna array may include one or more patch, ribbon, wire, helical, or inverted F type individual antennas. Other types of antennas may be used in the antenna array without departing from the scope of the disclosure. Each antenna has dedicated radio-frequency transceiver circuitry 342 connected to the array via logic 346. In this embodiment all antennas in the array can be actively transmitting or receiving at the same time. According to an embodiment, at least one antenna element in the array is switched by logic to restore communication upon loss of radio frequency communication. The array includes a photochemically-etched metallization pattern on a planar dielectric substrate, according to an embodiment.


System for Enabling Radio-Frequency Telemetry in IMD



FIG. 4 illustrates a block diagram of a system with an IMD having radio-frequency telemetry capabilities, according to one embodiment. The system includes an IMD 401, an electrical lead 420 coupled to the IMD 401, and at least one electrode 425. The IMD includes a controller circuit 405, a memory circuit 410, an antenna array 414, a telemetry circuit 415, and a stimulation circuit 435. At least one battery 450 connects to one or more power supplies 455 to provide electrical power to the device. The depicted power supply 455 is connected to the controller circuit 405. The controller circuit 405 is operable on instructions stored in the memory circuit to deliver stimulation therapy. Therapy is delivered by the stimulation circuit 435 through the lead 420 and the electrode(s) 425 to stimulate the myocardia or a neural target. Other stimulation targets and other types of therapy, such as drug delivery, are within the scope of this disclosure. The telemetry circuit 415 and antenna array 414 (such as the antenna array depicted in FIG. 1) allow communication with an external communication, monitoring or control device, such as programmer 430. Other examples of external devices include a bedside monitor or hand-held programming or monitoring device. The programmer 430 can be used to adjust the programmed therapy provided by the IMD 401, and the IMD can report device data (such as battery and lead resistance) and therapy data (such as sense and stimulation data) to the programmer using radio telemetry, for example. According to various embodiments, the IMD 401 senses one or more physiological parameters and delivers stimulation therapy. The illustrated system also includes sensor circuitry 440 that is coupled to at least one sensor 445. The controller circuit 405 processes sensor data from the sensor circuitry and delivers a therapy responsive to the sensor data.



FIG. 5 illustrates a block diagram of an external communication, monitoring or control device such as illustrated in the system of FIG. 4 or other external device to communicate with the IMD(s), according to one embodiment. Examples of external communication, monitoring or control devices include programmers, bedside monitors, hand-held programming or monitoring devices, and Personal Digital Assistants (PDAs) or personal laptop and desktop computers in an Advanced Patient Management (APM) system. The illustrated device 522 includes controller circuitry 545 and a memory 546. The controller circuitry 545 is capable of being implemented using hardware, software, and combinations of hardware and software. For example, according to various embodiments, the controller circuitry 545 includes a processor to perform instructions embedded in the memory 546 to perform a number of functions, including communicating data and/or programming instructions to the implantable devices. The illustrated device 522 further includes a transceiver 547 and associated circuitry for use to communicate with an implantable device. Various embodiments have wireless communication capabilities. For example, various embodiments of the transceiver 547 and associated circuitry are connected to an antenna 551 or an antenna array to wirelessly communicate with an implantable device. The illustrated device 522 further includes a display 548, input/output (I/O) devices 549 such as a keyboard or mouse/pointer, and a communications interface 550 for use to communicate with other devices, such as over a communication network.


Method for Enabling Radio-Frequency Telemetry in IMD



FIG. 6 illustrates a flow diagram of a method for making an IMD having multiple radio-frequency telemetry antennas, according to one embodiment. According to various embodiments, the method 600 includes forming an antenna assembly, including forming an array of antennas adapted to facilitate transmission and reception of modulated radio-frequency energy at one or more specified carrier frequencies, at 605. The method embodiment also includes installing the antenna assembly in an implantable medical device, at 610. The method embodiment further includes connecting the antenna assembly to electronic circuitry within the implantable medical device, at 615.


The above method is not limited to antenna arrays, and can be altered to include forming two or more antennas in the antenna assembly, in various embodiments. According to one embodiment, forming the antenna assembly includes surrounding the antenna array with a dielectric material. According to another embodiment, the antenna array is surrounded with a dielectric material after installing the antenna assembly in the IMD. Surrounding the antenna array with a dielectric material may include overmolding the antenna array, backfilling with a medical adhesive, or use of other types of dielectric materials such as circuit board material, human tissue, and/or high-dielectric constant materials. Installing the antenna assembly in an implantable medical device includes placing the antenna array in a device header, according to various embodiments. According to various embodiments, the antennas and circuitry are adapted to facilitate far-field transmission and reception of modulated radio-frequency energy at a specified carrier frequency.


According to various embodiments, at least one antenna in the array can be formed using stamped metal, rolled metal, formed metal or cast metal. At least one antenna in the array can also be formed using conductive composite material, according to an embodiment. According to various embodiments, forming an array of antennas includes forming at least one antenna with a helical portion. The helical portion of the antenna includes a metal wire wound around a bobbin, according to an embodiment. Forming an array of antennas includes surrounding at least one antenna with dielectric-embedded passive (non-driven) elements adapted to change shape of a transmit and receive spatial pattern, according to an embodiment. These passive elements are also referred to as directors, and may be metallic in various embodiments. The passive elements are adapted to tune the antenna(s) for more efficient transmission and receipt of energy over a specified range of frequencies. According to an embodiment, a patch antenna array can be formed with some passive (non-driven) elements used as directors to tune the antenna(s). A planar substrate may also be used in an embodiment, with a metallization pattern having non-driven elements and a reflector for tuning at least one antenna in the array.


One of ordinary skill in the art will understand that, the modules and other circuitry shown and described herein can be implemented using software, hardware, and combinations of software and hardware. As such, the illustrated modules and circuitry are intended to encompass software implementations, hardware implementations, and software and hardware implementations.


This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. An implantable medical device, comprising: a housing;electronic circuitry at least partially contained within the housing;at least two antennas electrically connected to the electronic circuitry, wherein the at least two antennas and electronic circuitry are configured to wirelessly transfer information using modulated radio-frequency energy; andwherein the at least two antennas comprise: a first antenna configured to wirelessly transfer information at a specified first range of operating frequencies when the first antenna is substantially surrounded by a specified first medium; anda second antenna configured to wirelessly transfer information at a specified second range of operating frequencies when the second antenna is substantially surrounded by a specified second medium different than the first medium.
  • 2. The device of claim 1, wherein the first and second specified ranges of operating frequencies at least partially overlap.
  • 3. The device of claim 1, wherein the specified first medium includes air.
  • 4. The device of claim 3, wherein the specified second medium includes a tissue medium selected from a list including fatty tissue or muscle tissue.
  • 5. The device of claim 1, wherein at least one of the at least two antennas is configured to be selectively electrically connected to the electronic circuitry.
  • 6. The device of claim 5, wherein the electronic circuitry is configured to wirelessly transfer information using the at least one antenna exclusively, when the at least one antenna is selected.
  • 7. The device of claim 5, wherein the electronic circuitry is configured to wirelessly transfer information using the at least one antenna simultaneously with one or more of the at least two antennas, when the at least one antenna is selected.
  • 8. The device of claim 5, wherein the electronic circuitry is configured to detect a condition and to select at least one of the at least two antennas for use in wireless information transfer in response to the detected condition.
  • 9. The device of claim 8, wherein the electronic circuitry includes an error rate detector, wherein the error rate detector is configured to detect a wireless information transfer error rate, and wherein the electronic circuitry is configured to select at least one of the at least two antennas for use in wireless information transfer in response to the wireless information transfer error rate detected at or in excess of a specified error rate threshold.
  • 10. The device of claim 8, wherein the electronic circuitry is configured to detect a loss of wireless information transfer between the implantable device and at least one other device separate from the implantable device, and wherein the electronic circuitry is configured to select at least one of the at least two antennas to reestablish wireless information transfer in response to the detected loss of wireless information transfer.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 11/423,262, filed Jun. 9, 2006, now issued as U.S. Pat. No. 7,613,522, which is hereby incorporated by reference in its entirety.

US Referenced Citations (148)
Number Name Date Kind
3667477 Susset et al. Jun 1972 A
3718909 Greatbatch Feb 1973 A
3830242 Greatbatch Aug 1974 A
4230128 Aramayo Oct 1980 A
4262632 Hanton et al. Apr 1981 A
4341982 Lahti et al. Jul 1982 A
4441498 Nordling Apr 1984 A
4519401 Ko et al. May 1985 A
4542535 Bates et al. Sep 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4580950 Sumikawa et al. Apr 1986 A
4634294 Christol et al. Jan 1987 A
4803987 Calfee et al. Feb 1989 A
4944299 Silvian Jul 1990 A
5025808 Hafner Jun 1991 A
5058581 Silvian Oct 1991 A
5089019 Grandjean Feb 1992 A
5109853 Taicher et al. May 1992 A
5113869 Nappholz et al. May 1992 A
5118825 Wu Jun 1992 A
5127404 Wyborny et al. Jul 1992 A
5314453 Jeutter May 1994 A
5336245 Adams et al. Aug 1994 A
5337756 Barbier et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5385578 Bush et al. Jan 1995 A
5486200 Lindemans Jan 1996 A
5516285 Yacker et al. May 1996 A
5534019 Paspa Jul 1996 A
5535752 Halperin et al. Jul 1996 A
5556421 Prutchi et al. Sep 1996 A
5562713 Silvian Oct 1996 A
5579876 Adrian et al. Dec 1996 A
5593430 Renger Jan 1997 A
5598847 Renger Feb 1997 A
5650759 Hittman et al. Jul 1997 A
5683432 Goedeke et al. Nov 1997 A
5697958 Paul et al. Dec 1997 A
5735887 Barreras, Sr. et al. Apr 1998 A
5749912 Zhang et al. May 1998 A
5766232 Grevious et al. Jun 1998 A
5784032 Johnston et al. Jul 1998 A
5807397 Barreras Sep 1998 A
5833603 Kovacs et al. Nov 1998 A
5861019 Sun et al. Jan 1999 A
5862803 Besson et al. Jan 1999 A
5876331 Wu Mar 1999 A
5904708 Goedeke May 1999 A
5919210 Lurie et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5958645 Hirose et al. Sep 1999 A
6009350 Renken Dec 1999 A
6115583 Brummer et al. Sep 2000 A
6115634 Donders et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6116636 Bianchi Bazzi Sep 2000 A
6169925 Villaseca et al. Jan 2001 B1
6205358 Haeg et al. Mar 2001 B1
6240317 Villaseca et al. May 2001 B1
6263246 Goedeke et al. Jul 2001 B1
6275737 Mann Aug 2001 B1
6309350 VanTassel et al. Oct 2001 B1
6329920 Morrison et al. Dec 2001 B1
6388628 Dettloff et al. May 2002 B1
6392610 Braun et al. May 2002 B1
6416471 Kumar et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6456256 Amundson et al. Sep 2002 B1
6470215 Kraus et al. Oct 2002 B1
6505072 Linder et al. Jan 2003 B1
6505077 Kast et al. Jan 2003 B1
6531982 White et al. Mar 2003 B1
6535766 Thompson et al. Mar 2003 B1
6561975 Pool et al. May 2003 B1
6574508 Zaouali et al. Jun 2003 B2
6574509 Kraus et al. Jun 2003 B1
6574510 Von Arx et al. Jun 2003 B2
6592518 Denker et al. Jul 2003 B2
6614406 Amundson et al. Sep 2003 B2
6622043 Kraus et al. Sep 2003 B1
6675045 Mass et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6708065 Von Arx et al. Mar 2004 B2
6721602 Engmark et al. Apr 2004 B2
6766200 Cox Jul 2004 B2
6804561 Stover Oct 2004 B2
6809701 Amundson et al. Oct 2004 B2
6868288 Thompson Mar 2005 B2
7016733 Dublin et al. Mar 2006 B2
7072718 Von Arx et al. Jul 2006 B2
7103413 Swanson et al. Sep 2006 B2
7149578 Edvardsson Dec 2006 B2
7289855 Nghiem et al. Oct 2007 B2
7309262 Zart et al. Dec 2007 B2
7313441 Mass et al. Dec 2007 B2
7317946 Twetan et al. Jan 2008 B2
7319901 Dublin et al. Jan 2008 B2
7363087 Nghiem et al. Apr 2008 B2
7483752 Von Arx et al. Jan 2009 B2
7613522 Christman et al. Nov 2009 B2
7720544 Christman et al. May 2010 B2
7848788 Tulley et al. Dec 2010 B2
20010034543 Haeg Oct 2001 A1
20010047125 Quy Nov 2001 A1
20020037756 Jacobs et al. Mar 2002 A1
20020045920 Thompson Apr 2002 A1
20020065539 Von Arx et al. May 2002 A1
20020095195 Mass et al. Jul 2002 A1
20020123776 Von Arx et al. Sep 2002 A1
20030023175 Arzbaecher et al. Jan 2003 A1
20030025645 Amundson et al. Feb 2003 A1
20030028902 Cubley et al. Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030083719 Shankar et al. May 2003 A1
20030195589 Von Arx et al. Oct 2003 A1
20040027306 Amundson et al. Feb 2004 A1
20040046637 Wesby Van Swaay Mar 2004 A1
20040060011 Nitta et al. Mar 2004 A1
20040106967 Von Arx et al. Jun 2004 A1
20040123667 McGrath Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147974 Engmark et al. Jul 2004 A1
20040152953 Goedeke Aug 2004 A1
20040167580 Mann et al. Aug 2004 A1
20040176811 Von Arx et al. Sep 2004 A1
20040215958 Ellis et al. Oct 2004 A1
20050027175 Yang Feb 2005 A1
20050027192 Govari et al. Feb 2005 A1
20050113886 Fischell et al. May 2005 A1
20050203583 Twetan et al. Sep 2005 A1
20050203584 Twetan et al. Sep 2005 A1
20050222633 Edvardsson Oct 2005 A1
20060089682 Kronich et al. Apr 2006 A1
20060224206 Dublin Oct 2006 A1
20060247711 Verhoef et al. Nov 2006 A1
20060247712 Fuller et al. Nov 2006 A1
20070142829 Ahn Jun 2007 A1
20070179554 Iyer et al. Aug 2007 A1
20070222697 Caimi et al. Sep 2007 A1
20070260294 Schulman et al. Nov 2007 A1
20070288065 Christman et al. Dec 2007 A1
20070288066 Christman et al. Dec 2007 A1
20080021522 Verhoef et al. Jan 2008 A1
20080039898 Lim et al. Feb 2008 A1
20090192574 Von Arx et al. Jul 2009 A1
20100204759 Christman et al. Aug 2010 A1
Foreign Referenced Citations (16)
Number Date Country
0168640 Jan 1986 EP
1050265 Nov 2000 EP
1393672 Mar 2004 EP
1537895 Jun 2005 EP
1362614 Mar 2008 EP
WO-9848895 Nov 1998 WO
WO-0062664 Oct 2000 WO
WO-0180731 Nov 2001 WO
WO-0191428 Nov 2001 WO
WO-0231909 Apr 2002 WO
WO-02089667 Nov 2002 WO
WO-03053515 Jul 2003 WO
WO-2004066834 Aug 2004 WO
WO-2005123186 Dec 2005 WO
WO-2006060750 Jun 2006 WO
WO-2006131302 Dec 2006 WO
Non-Patent Literature Citations (27)
Entry
“U.S. Appl. No. 09/798,249, Non-Final Office Action mailed Mar. 28, 2003”, 7 pgs.
“U.S. Appl. No. 09/798,249, Notice of Allowance mailed Oct. 21, 2003”, 5 pgs.
“U.S. Appl. No. 09/798,249, Response filed Jul. 28, 2003 to Non Final Office Action mailed Mar. 28, 2003”, 8 pgs.
“U.S. Appl. No. 09/921,653, Notice of Allowance mailed May 7, 2002”, 6 pgs.
“U.S. Appl. No. 10/252,494, Non-Final Office Action mailed Jan. 30, 2003”, 4 pgs.
“U.S. Appl. No. 10/252,494, Notice of Allowance mailed Mar. 25, 2003”, 5 pgs.
“U.S. Appl. No. 10/252,494, Response filed Mar. 5, 2003 to Non Final Office Action mailed Jan. 30, 2003”, 6 pgs.
“U.S. Appl. No. 10/634,233, Notice of Allowance mailed Jun. 16, 2004”, 6 pgs.
“U.S. Appl. No. 10/800,596, Amendment and Response filed Jun. 7, 2007 to Final Office Action mailed Mar. 7, 2007”, 8 pgs.
“U.S. Appl. No. 10/800,596, Final Office Action mailed Dec. 4, 2007”, 4 pgs.
“U.S. Appl. No. 10/800,596, Final Office Action mailed Mar. 7, 2007”, 7 pgs.
“U.S. Appl. No. 10/800,596, Non-Final Office Action mailed Mar. 3, 2008”, 9 pgs.
“U.S. Appl. No. 10/800,596, Non-Final Office Action mailed Jun. 28, 2007”, 6 pgs.
“U.S. Appl. No. 10/800,596, Notice of Allowance mailed Sep. 17, 2008”, 4 pgs.
“U.S. Appl. No. 10/800,596, Response filed Feb. 4, 2008 to Final Office Action mailed Dec. 4, 2007”, 6 pgs.
“U.S. Appl. No. 10/800,596, Response filed Jun. 3, 2008 to Non-Final Office Action mailed Mar. 3, 2008”, 8 pgs.
“U.S. Appl. No. 10/800,596, Response filed Sep. 28, 2007 to Non-Final Office Action mailed Jun. 28, 2007”, 8 pgs.
“U.S. Appl. No. 11/423,254, Non-Final Office Action mailed Jul. 28, 2009”, 10 pgs.
“U.S. Appl. No. 11/423,254, Response filed Apr. 30, 2009 to Restriction Requirement filed Mar. 31, 2009”, 11 pgs.
“U.S. Appl. No. 11/423,254, Response filed Oct. 28, 2009 to Non Final Office Action mailed Jul. 28, 2009”, 14 pgs.
“U.S. Appl. No. 11/423,254, Restriction Requirement mailed Mar. 31, 2009”, 9 pgs.
“U.S. Appl. No. 11/423,262 Response filed Mar. 24, 2009 to Non Final Office Action mailed Dec. 24, 2008”, 9 pgs.
“U.S. Appl. No. 11/423,262, Non-Final Office Action mailed Dec. 24, 2008”, 9 pgs.
“U.S. Appl. No. 11/423,262, Notice of Allowance mailed Jun. 23, 2009”, 7 pgs.
Karacolak, T., et al., “Design of a Dual-Band Impantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring”, IEEE Transactions on Microwave Theory and Techniques, 56(4), (Apr. 2008), 1001-1008.
“U.S. Appl. No. 11/423,254, Notice of Allowance mailed Dec. 31, 2009”, 7 pgs.
“U.S. Appl. No. 12/762,086, Non Final Office Action Mailed Jan. 30, 2012”, 11 pgs.
Related Publications (1)
Number Date Country
20100016925 A1 Jan 2010 US
Continuations (1)
Number Date Country
Parent 11423262 Jun 2006 US
Child 12565482 US