The present invention relates to a multi-antenna wireless sensor system, more particularly a sensor system that remotely monitors wireless physiological signal sensor and feedback data through a wireless base station arranged with a plurality of wireless transceivers and a network device.
Many conventional physiological signal monitoring devices, such as the sleep monitoring system, are built on wired transmission technology that means wires have to be attached to subjects' body, and they are connected to a huge and heavy machine which would restrict the movement of the subjects and at times makes it hard for them to go to bathrooms. That is one of the reasons that keep many patients with sleep disorder from having examination in hospitals. It also takes a lot of time to train technicians to conduct the examination in the hospitals.
Wireless devices can be categorized into different classes by the radiation emitted. For example, a radio station emits kW radiation, and a mobile phone emits 1 W radiation. However, studies on the long-term exposure to such radiation have not been well established and the effects of such radiation on people are inconclusive. Naturally people are apprehensive about the possible harmful effect of radio waves on brain. Recently some computer peripherals switch to wireless network or Bluetooth system with less energy consumption for signal transmission. Some low energy systems have even been applied to wireless mouse or keyboard. Generally speaking, people are weary of the possible health hazard of radiation while enjoying the convenience brought about by wireless products. Even though theoretically radiation emitted by wireless systems is proven harmless, wave interference between machines are not acceptable. Since the use of low energy in radio transmission has become a trend, low-energy systems are more readily accepted for use at home and in hospitals. Low energy also means lighter weight and more compact in size, and usually costs less. However, the application of low energy system produces some limitations on the detection of physiological signals because small emission power limits the range of transmission to 10 meters; therefore, once the user moves, the signals disappear. Since low radiation energy is favored by consumers, the only way to enhance the quality of wireless transmission is to increase the quantity or distribution density of receivers.
(1) wireless sensor;
(2) wireless base station;
(21) first wireless transceiver;
(22) second wireless transceiver;
(23) third wireless transceiver;
(3) network device;
(31) network server;
(4) data processing unit
(41) monitor.
The present invention relates to a multi-antenna wireless sensor system that allows a user to measure and transmit physiological signals, comprising a wireless sensor, a wireless base station, a network device, and a data processing unit. The wireless sensor can sense and collect the physiological signals of user and contains a portable electronic device with a wireless data transmission interface. The wireless base station contains a wireless communication apparatus having a plurality of wireless transceivers. Through the arrangement of those wireless transceivers, the wireless sensor can remotely or movably maintain data communication with the data processing unit, and the output signals of wireless sensor are transmitted to the data processing unit through the wireless base station and the network device for the post-processing of feedback data.
The basic concept of the present invention is to achieve perfect low-power wireless transmission of physiological signals by increasing the quantity and distribution of receivers. In view of the drawback of conventional physiological signal monitoring devices, the present invention aims to provide a multi-antenna wireless sensor system that answers to contemporary needs.
An object of the present invention is to provide a multi-antenna wireless sensor system that uses a wireless physiological signal monitoring device capable of collecting electric physiological signals and transmitting wirelessly, and a reliable and low-cost network device for data transmission between the multi-antenna wireless sensor system and data processing unit to achieve the functions of remote and real-time monitoring and feedback of physiological signals.
Another object of the present invention is to provide a multi-antenna wireless sensor system which, through the arrangement of a plurality of wireless transceivers, lowers the power of radio transmitters, thereby reducing their interference or effect on instrumentation or humans while achieving remote monitor.
Yet another object of the present invention is to provide a multi-antenna wireless sensor system which, through integration of synchronous receiving technology and physiological signal sensing technologies in the aforementioned wireless physiological signal monitoring device and the wireless base station with a plurality of wireless transceivers, can realize a totally wireless, easy-to-use, and accurate physiological signal monitoring system that is not confined by space or distance and is applicable to exercise testing, home care, and in-hospital observation. Such system can also be applied in the study of neuroscience, behavioral science, biofeedback (e.g. electroencephalogram (EEG) feedback to cut down dozing off during work), maintenance of cardiac and circulation system and routine activities to realize ultimately an intelligent PC-doctor system.
To achieve the aforesaid objects, the multi-antenna wireless sensor system allows the user to measure physiological signals and transmit the same, comprising a wireless sensor, a wireless base station, a network device, and a data processing unit. The wireless sensor can detect and collect the physiological signals of user and contain a portable electronic device having wireless data transmission interface. The wireless base station contains a wireless communication apparatus having a plurality of wireless transceivers. Through the arrangement of those wireless transceivers, the wireless sensor can remotely or movably maintain data communication with the data processing unit, and the output signals of wireless sensor are transmitted to the data processing unit through the wireless base station and the network device for the post-processing of feedback data.
The multi-antenna wireless sensor system transmits digital physiological signals intermittently to the wireless transceivers. The content of each transmission also includes the time of the data. The transmitted data can be fed to the data processing unit via any transceiver. If multiple wireless transceivers receive the data sent by the multi-antenna wireless sensor system at the same time, data received can be screened and integrated based on the temporal information of data without undermining the data accuracy.
The data processing unit calculates the position of wireless sensor based on the transmission sequential difference between the wireless transceivers of the wireless base station and the coordinates of each wireless transceiver.
The wireless sensor further includes a physiological signal collecting device that outputs a physiological signal corresponding to the physiological state of the user; a control module consisting of an electrical loop with a signal processing means; a wireless transmission module which is a wireless data transmission interface; and a power supply unit, which is a portable power source and supplies power needed by the wireless sensor. The power supply unit includes a rechargeable secondary battery is lithium, nickel-metal-hydride or lead-acid batteries. The power supply unit can also be a portable power generating apparatus selected from fuel cell and solar cell. The physiological signal collecting device can detect neural signals, electrocardiogram (ECG) signals, electromyogram (EMG) signals, and vocal signals.
The physiological signal collecting device can also be an electrocardiogram signal collecting device to detect electrocardiogram signals. The physiological signal collecting device comprises an amplifier module. The amplifier module further consists of an input filter, a differential amplifier, and an output filter. The input filter filters out noise to enhance the signal-to-noise ratio. The differential amplifier subjects the signal input by electrodes to common-mode noise attenuation and amplifies the electrocardiogram signal differential by a proper factor. The output filter eliminates the Nyquist frequency of differential amplified signal.
The wireless transmission module further comprises an antenna device and a modulator-demodulator. The antenna device can emit signals output by wireless sensor to the wireless base station and receive wireless signals emitted by the wireless base station. The modulator-demodulator modulates the electrical signal output by the control module into carrier wave of specific frequency and sends it to the wireless base station via the antenna device. The modulator-demodulator also demodulates the signals received by the antenna device into a digital signal and transmits it to the control module of wireless sensor for corresponding computing or operation.
In addition, the wireless transmission module can receive and convert the data sent by the wireless base station into electrical signal and transmit the signal to the wireless sensor.
The control module consists of an analog-digital converter and a microprocessor. The analog-digital converter converts the analog signal output by the amplifier module into a digital signal with proper voltage resolution and sampling frequency. The microprocessor compresses the digital signal output by the analog-digital converter to generate a digital electrocardiogram signal.
The network device further comprises a network server that carries out network addressing and data package exchange with the wireless sensor through electrical connection of network device and wireless transmission of wireless base station, and further allows the data processing unit to remotely monitor or control the wireless sensor.
The data processing unit further comprises a monitor, which has display and operation functions to enable the user to monitor or control the various operations of wireless sensor.
The wireless sensor further comprises a positioning device, which is an electric device compatible with the global positioning system and contains a positioning-satellite-signal-receiving means and a means that converts satellite signal into position signal to respectively receive the signal transmitted by a positioning satellite and convert the satellite signal received into a position signal, and then transmit the position signal to the microprocessor of control module. The microprocessor controls the transmission of said position signal to wireless base station through the wireless transmission module. Finally the signal is transmitted to the data processing unit through the network device to let the data processing unit obtain the location of the wireless sensor.
The positioning satellite-signal-receiving means is a satellite signal receiver. The means that converts satellite signal to position signal is an electrical loop where the satellite signal received by the positioning device is converted into a position signal by the control module and sent to the data processing unit via the wireless transmission module and the network device. The positioning satellite signal receiving means is achieved by a satellite signal receiver, while the means to convert satellite signal into position signal is achieved by the microprocessor of control module, or its electrical loop configuration is integrated in the control module.
The objects, features and function of the invention as well as implementation of the invention are described in detail below with embodiments in reference to the accompanying drawings.
The examples below are non-limiting and are merely representative of various aspects and features of the present invention.
Referring to
The wireless base station (2) is electrically connected to a wireless communication facility of the network device (3) to allow data exchange between them. That is, the wireless base station (2) is a physical extension of the electrical connection of network device (3). The wireless base station (2) comprises a plurality of wireless transceivers; through the arrangement of the wireless transceivers, the wireless sensor (1) remotely or movably maintains data communication with the data processing unit (4). Specifically, the wireless base station (2) consists of a first wireless transceiver (21), a second wireless transceiver (22), and a third wireless transceiver (23). Based on the sequential differences of transmission between the wireless sensor (1) and the first wireless transceiver (21), the second wireless transceiver (22), and the third wireless transceiver (23) respectively, and coordinates of each transceiver, the data processing unit (4) can calculate the location of the wireless sensor (1) corresponding to the transceivers. In the case of application to hospital patients, when a patient under monitoring is walking around in the hospital, wireless transceivers in the wireless base station (2) would receive signal from the wireless sensor (1) and send the signal to data processing unit (4) for determination of the location of wireless sensor (1) that allows hospital personnel to know the location of the patient. If the patient is in emergency, the hospital personnel will be able to arrive at where the patient is located in the shortest time or deal with the patient easily.
Referring to
The physiological signal collecting device (11) can be an electrocardiogram signal collecting device, comprising a set of electrodes (11a) and an amplifier module (11b). The amplifier module (11b) further consists of an input filter (11c), a differential amplifier (11d), and an output filter (11e). The electrodes (11a) are adhered to the user, through which, user's electrocardiogram signals are collected. The input filter (11c) filters out noise to enhance the signal-to-noise ratio of electrocardiogram signal collected. The differential amplifier (11d) subjects the signal input by the electrodes (11a) to common-mode noise attenuation and amplify the signal differential by a proper factor. Finally, the output filter (11e) eliminates the Nyquist frequency of differential amplified signal to facilitate data conversion by control module (12).
The control module (12) consists of an analog-digital converter (12a) and a microprocessor (12b). The analog-digital converter (12a) converts the analog signal output by amplifier module (11b) into a digital signal with proper voltage resolution and sampling frequency. The microprocessor (12b) compresses the digital signal output by the analog-digital converter (12a) to generate a digital electrocardiogram signal.
The wireless transmission module (13) further includes an antenna device (13a) and a modulator-demodulator (13b). The antenna device (13a) emits signals output by wireless sensor (1) to the wireless base station (2) and receives wireless signals emitted by the wireless base station (2). The modulator-demodulator (13b) modulates the digital electrocardiogram signal output by the control module (12) to carrier wave of specific frequency and sends it to the wireless base station (2) via the antenna device (13a). The modulator-demodulator (13b) also demodulates the signal received by the antenna device (13a) into a digital signal and transmits it to the control module (12) of wireless sensor (1) for corresponding computing or operation.
The network device (3) further comprises a network server (31) that carries out network addressing and packet exchange with the wireless sensor (1) through electrical connection of network device (3) and wireless transmission of wireless base station (2), and further allows the data processing unit (4) to remotely monitor or control the wireless sensor (1). Furthermore, the network device (3) is a regular network that can engage in one-way or two-way transmission or communication with an electrical device. For example, the network device (3) is the intranet of a hospital or Internet, or a network built for the specific purpose of the multi-antenna wireless sensor system of the invention.
The data processing unit (4) further comprises a monitor (41), which has display and operation functions to enable the user to monitor or control the various operations of wireless sensor (1).
Referring to
Referring to
Referring to
The experimental results as shown in
The preferred embodiments of the present invention have been disclosed in the examples. However the examples should not be construed as a limitation on the actual applicable scope of the invention, and as such, all modifications and alterations without departing from the spirits of the invention and appended claims shall remain within the protected scope and claims of the invention.
Number | Date | Country | Kind |
---|---|---|---|
096131616 | Aug 2007 | TW | national |