The object of the invention is to provide a high pressure and high temperature machine housed in an industrial reaction chamber which purpose is to obtain diamond, boron nitride and similar substances, by means of cubic multi-anvil action and the action of hemispherical pistons provided with modular locks.
Devices and machines used to generate high pressures and high temperatures have been developed to cover industrial and research needs. Industrial production of diamonds requires the generation of pressures and temperatures similar to those of the innermost depths of earth where natural crystals are formed. Also, the study and simulation of geologic and mining conditions require said conditions.
In this sense, multiple variations of devices capable of generating large pressures at high temperatures and to maintain those conditions during many hours, even days, have been developed. Within this group of devices are those known as Belt type and the Mold or Matrix types. In these devices the reaction chamber is confined by a perforated metal disc formed by several cylindrical metal layers adjusted to each other, or in some type of contention mold or matrix designed to sustain the tensions generated. The force is generated by two axially opposed pistons that move toward each other pressing the sample, chamber or capsule, or reaction chamber confined into the mold. Said devices are well known and have been described in the ordinary bibliography on high pressures and crystal synthesis and in various patents. These devices are capable of attaining pressures in the 10 Gpa order of magnitude and above, as well as temperatures of 2000° C. or above.
To overcome certain problems related to the enormous internal friction that is generated inside the mold and opposed piston types of machines, and to develop pressures closer to hydrostatic pressure, the apparatuses known as multi-anvil machines have been developed. In these machines, several pistons (or co-anvils) press the sample (capsule or reaction chamber) simultaneously. Generally, there are four pistons arranged in a tetrahedral geometry (tetrahedral machine), six pistons arranged in a cubic geometry (cubic machine) and other simple and ingenious arrangements in one or several layers. The same pistons together with their high pressure joints serve to contain the sample. A good review of these types of machines and their operation can be found, as well as their diverse applications.
These types of machines have very good qualities applicable to the synthesis of high pressure and temperature materials; however, they also have some disadvantages that can be improved. The main inconvenience of the multi-anvil machines is their complexity of operation.
Most of these machines require the complex assembly of different bodies and joints before beginning the work cycle, or otherwise require a careful adjustment of the linear alignment of their multiple pistons and the adjustment of the force exerted by each piston.
Another serious inconvenience is their low productivity, which is generally due to their inability to work with reaction capsules larger than a few cubic centimeters.
There is then a need to adapt these types of machines to a productive process that allows a profitable operation in industrial environments and in advance applications of Research and Development, increasing their reliability, and productivity, and making the manufacturing process easier.
The present invention refers to a multi-anvil machine having the possibility of increasing the pressure inside the reaction chamber by means of one or two hemispherical pistons housed in hemispherical chambers that resolve the problems found in the current state of the art. Said machine is capable of generating large pressures and temperatures, inside a reaction chamber, needed in industrial applications for processes such as the manufacture of diamonds, boron nitride and similar substances. In addition, said conditions are generated in a reproducible manner that is also stable in time.
Another objective of the present invention is to provide an easy manufacturable lock capable of containing the force generated by the machine, reducing the size of the assembly parts. Also, said lock is of a modular design, which allows for enlargement of the lock's size, if the size of the reaction chamber or the necessary pressures so require.
Another objective is to provide a multi-anvil machine that can be easily and efficiently operated.
The characteristic elements of the invention are:
a: Detail A of the piston
The machine object of the present invention has the following elements according to the accompanying figures:
1. Nut
2. Tie
3. Upper semi-ring
4. Lower semi-ring
5. Upper cover
6. Chamber
7. Isolated nut
8. Electrode
9. Seal joint
10. Guide
11. Seal joint
12. Abutment
13. Abutment
14. Seal joint
15. High pressure connection
16. Cooling valve
17. Hemispherical pistons
18. Insulating joint plate
19. Cylindrical sector
20. Ring
21. (not in text)
22. Anvil
23. High pressure seal joint
24. Reaction capsule
25. Electrode
26. Intermediate semi-ring
27. Intermediate semi-ring
The design of this spherically shaped chamber supports optimally the hydraulic pressures that can be generated inside it, allowing working conditions in the order of 4,000 and even 6,000 Kgf/sqcm depending on the materials chosen for the design. These two bodies are confined by two semi-locks, that are themselves composed by two upper 3 and lower 4 semi-rings.
Said semi-rings are joined by ties 2 threaded in the lower semi-ring and tightened by nuts 1. In this manner, the semi-locks form a compact but modular unit set that can sustain the force generated by piston 17, which also thrusts over the upper cover 5 through the set of anvils and capsule as shown in
a shows a detail of the semi-spherical piston area, where the necessary hydraulic pressures are generated for the operation of the machine as follows:
High pressure oil enters the semi-spherical high pressure chamber, where the semi-spherical piston 17 is housed, through the high pressure connection 15. Said piston moves axially guided by the abutments 13 and a small guide 10 that travels through a cylindrical surface that has a short length compared to its diameter. This travel movement represents the travel path of the semi-spherical piston, that is then, small in relation to its diameter. This short travel path ensures the machine is working in a highly safe manner, since the possible accumulation of energy that could become dangerous in case any of the elements subjected to high pressure were to break, is then reduced to a thin spherical sheet around the piston. This possible failure or breakage of the material would not have severe consequences, since the layer subjected to high pressure is very thin in relation to the piston's diameter. In case of some type of failure, the volume of the cavity that holds the hydraulic fluid increases quickly, suddenly lowering the pressure to a point of no danger. In other words, it is impossible, in this type of machines for the hydraulic chamber to explode, or for any accident that entails a violent projection of any of the parts that make up the machine to occur.
Below the guide 10 there is a high pressure seal joint 11 that confines the hydraulic fluid together with the high pressure joint 14, preventing escapes. Inside the hemispherical piston there is a cylindrical cavity that houses a series of anvils, called cylindrical sectors 19.
The thrust of the piston over the cylindrical sectors 19 is itself transmitted to these anvils 22 that are separated by high pressure seal joints 23 that confine the reaction chamber 24.
The thrust chain is then the following:
The high pressure oil pushes piston 17 that then pushes the cylindrical sectors 19, that then push anvils 22, that in turn push the reaction chamber 24 from three mutually perpendicular directions (cubic), enabling an intensification of the pressure inside the reaction chamber 24 due to the geometric relationship of the forces and components that decompose according to the system's geometry. It is then possible to obtain in reaction chambers of more than 30 cc pressures well above 4 GPa. It is possible, even to obtain pressures above 10 GPa depending on the material used to manufacture the anvils 22 and the contents and size of the reaction chamber.
When heating the reaction chamber becomes necessary, the heating is achieved by an electrical resistance that conducts the electric current through the electrodes 7 and 8 that are in contact with the upper cylindrical sectors that transmit the electrical current to the reaction chamber through anvils 22, all their faces duly insulated, except for the face in contact with the reaction chamber and the corresponding cylindrical sectors.
The entire system is cooled by water or cooling fluid that enters through the cooling valve 16. The cooling system is perfectly pressurized, even during the movement of the hemispherical piston 17, by seal 9 made of rubber or of any similar elastomer.
The materials most suited to build these machines are high resistance steels: for the covers and the chamber F-125, F-127 or similar, with the appropriate thermal treatment; for the ties and the nuts, treated F-127 steel or similar, for the semi-rings F-125 or similar, for the semi-spherical pistons F-127, Maragin steel or other high resistance alloyed steels. For the cylindrical sectors F-5318, hardened DIN 1.2379 or similar, and for the anvils wolframium carbide containing between 6% and 10% of ligand (Co) are used.
This same model can be repeated in
Number | Date | Country | Kind |
---|---|---|---|
P200500387 | Feb 2005 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES05/00463 | 8/16/2005 | WO | 00 | 8/10/2007 |