This disclosure relates generally to antennas and electromagnetics in wireless communication systems. More specifically, this disclosure relates to multi-aperture planar lens antenna system.
A lens is an electronic device that may focus a planar wave front of electro-magnetic (EM) waves to a focal point or, conversely, collimate spherical waves emitting from a point source to plane waves. Such fundamental characteristics are widely used in various applications, such as communication, imaging, radar, and spatial power combining systems. For example, in millimeter-wave frequency bands that fifth generation (5G) communication standards may employ, lenses have been paid considerable attention as a potential solution to overcome limits in gain and beam steering capabilities of antennas operating in such frequency bands.
This disclosure provides multi-aperture planar lens antenna system.
In one embodiment, an apparatus includes at least one feed subarray of antenna elements and a plurality of lenses in an aperture. The at least one feed subarray of antenna elements is configured to emit a plurality of beams. The plurality of lenses is configured to steer the plurality of beams. Each of the plurality of lenses including a different phase profile.
In another embodiment, a method for operating system is provided. The method includes emitting a plurality of beams, steering the plurality of beams, each of the plurality of lenses including a different phase profile, and transmitting the plurality of beams. Each of the plurality of beams comprising a different beam pattern.
In yet another embodiment, a system includes at least one feed subarray of antenna elements configured to emit a plurality of beams. The system further includes a plurality of lenses in an aperture. The plurality of lenses is configured to steer the plurality of beams. Each of the plurality of lenses includes a different phase profile. The system further includes at least one antenna configured to transmit the plurality of beams. Each of the plurality of beams comprising a different beam pattern.
Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The term “couple” and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The terms “transmit,” “receive,” and “communicate,” as well as derivatives thereof, encompass both direct and indirect communication. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof, means to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the like. The term “controller” means any device, system or part thereof that controls at least one operation. Such a controller may be implemented in hardware or a combination of hardware and software and/or firmware. The functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one item in the list may be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.
Moreover, various functions described below can be implemented or supported by one or more computer programs, each of which is formed from computer readable program code and embodied in a computer readable medium. The terms “application” and “program” refer to one or more computer programs, software components, sets of instructions, procedures, functions, objects, classes, instances, related data, or a portion thereof adapted for implementation in a suitable computer readable program code. The phrase “computer readable program code” includes any type of computer code, including source code, object code, and executable code. The phrase “computer readable medium” includes any type of medium capable of being accessed by a computer, such as read only memory (ROM), random access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), or any other type of memory. A “non-transitory” computer readable medium excludes wired, wireless, optical, or other communication links that transport transitory electrical or other signals. A non-transitory computer readable medium includes media where data can be permanently stored and media where data can be stored and later overwritten, such as a rewritable optical disc or an erasable memory device.
Definitions for other certain words and phrases are provided throughout this patent document. Those of ordinary skill in the art should understand that in many if not most instances, such definitions apply to prior as well as future uses of such defined words and phrases.
For a more complete understanding of this disclosure and its advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
The following documents and standards descriptions are hereby incorporated by reference into the present disclosure as if fully set forth herein: Akbar M. Sayeed and Nader Behdad, “HYBRID ANALOG-DIGITAL PHASED MIMO TRANSCEIVER SYSTEM,” Pub NO US 2012/0076498 A1, US patent, March 2012. (REF 1), J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3814-3827, July 2013. (REF 2), C.-C. Cheng, B. Lakshminarayanan, and A. Abbaspour-Tamijani, “A programmable lens-array antenna with monolithically integrated MEMS switches,” IEEE Trans. Microwaves Theory Tech., vol. 57, no. 8, pp. 1874-1884, August 2009. (REF 3), D. H. Kwon and D. H. Werner, “Beam scanning using flat transformation electromagnetic focusing lenses,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1115-1118, 2009. (REF 4), A. Abbaspour-Tamijani, L. Zhang and H. K. Pan, “Enhancing the directivity of phased array antennas using lens-arrays,” Progress In Electromagnetics Research M, Vol. 29, 41-64, 2013. (REF 5), J. Oh, G. Hutcheson, and W. Hong, “Low-Cost Low-Loss Planar Lens Employing Mixed-Order Cauer/Elliptic Filter,” Prosecution ID WD-201304-024-1-USO, April 2013. (REF 6), and J. Oh and G. Hutcheson, “Single-Substrate Planar Lens Employing Spatial Mixed-Order Bandpass Filter,” Prosecution ID WD-201307-013-1-USO, July 2013. (REF 7)
The descriptions of
As shown in
The eNB 102 provides wireless broadband access to the network 130 for a first plurality of UEs within a coverage area 120 of the eNB 102. The first plurality of UEs includes a UE 111, which may be located in a small business (SB); a UE 112, which may be located in an enterprise (E); a UE 113, which may be located in a WiFi hotspot (HS); a UE 114, which may be located in a first residence (R); a UE 115, which may be located in a second residence (R); and a UE 116, which may be a mobile device (M), such as a cell phone, a wireless laptop, a wireless PDA, or the like. The eNB 103 provides wireless broadband access to the network 130 for a second plurality of UEs within a coverage area 125 of the eNB 103. The second plurality of UEs includes the UE 115 and the UE 116. In some embodiments, one or more of the eNBs 101-103 may communicate with each other and with the UEs 111-116 using 5G, LTE, LTE-A, WiMAX, WiFi, LTE-U(LAA) or other wireless communication techniques.
Depending on the network type, other well-known terms may be used instead of “eNodeB” or “eNB,” such as “base station” or “access point.” For the sake of convenience, the terms “eNodeB” and “eNB” are used in this patent document to refer to network infrastructure components that provide wireless access to remote terminals. Also, depending on the network type, other well-known terms may be used instead of “user equipment” or “UE,” such as “mobile station,” “subscriber station,” “remote terminal,” “wireless terminal,” or “user device.” For the sake of convenience, the terms “user equipment” and “UE” are used in this patent document to refer to remote wireless equipment that wirelessly accesses an eNB, whether the UE is a mobile device (such as a mobile telephone or smartphone) or is normally considered a stationary device (such as a desktop computer or vending machine).
Dotted lines show the approximate extents of the coverage areas 120 and 125, which are shown as approximately circular for the purposes of illustration and explanation only. It should be clearly understood that the coverage areas associated with eNBs, such as the coverage areas 120 and 125, may have other shapes, including irregular shapes, depending upon the configuration of the eNBs and variations in the radio environment associated with natural and man-made obstructions.
As described in more detail below, one or more of the UEs 111-116 include circuitry, programming, or a combination thereof, for processing of uplink and downlink channels on unlicensed frequency spectrum and/or licensed frequency spectrum using a carrier aggregation scheme. In certain embodiments, and one or more of the eNBs 101-103 includes circuitry, programming, or a combination thereof, for processing beam patterns and angular coverage of planar lens antenna systems by employing multiple lenses and feed arrays.
Although
In one embodiment, the eNB 101 may communicate with neighbor eNBs using a multi-aperture planar lens antenna system through a wireless communication channel. In another embodiment, the eNB 101 may communicate with a backhaul network using a multi-aperture planar lens antenna system through a wireless communication channel. In such embodiments, the eNB 101 may use multi-aperture lens antenna system comprising multiple lenses and single/multi-sources for wireless communications, where the lens aperture may include at least two different-type lenses, each of which is designed to achieve different angular range.
As shown in
The RF transceivers 210a-210n receive, from the antennas 205a-205n, incoming RF signals, such as signals transmitted by UEs in the network 100. The RF transceivers 210a-210n down-convert the incoming RF signals to generate IF or baseband signals. The IF or baseband signals are sent to the RX processing circuitry 220, which generates processed baseband signals by filtering, decoding, and/or digitizing the baseband or IF signals. The RX processing circuitry 220 transmits the processed baseband signals to the controller/processor 225 for further processing.
The TX processing circuitry 215 receives analog or digital data (such as voice data, web data, e-mail, or interactive video game data) from the controller/processor 225. The TX processing circuitry 215 encodes, multiplexes, and/or digitizes the outgoing baseband data to generate processed baseband or IF signals. The RF transceivers 210a-210n receive the outgoing processed baseband or IF signals from the TX processing circuitry 215 and up-converts the baseband or IF signals to RF signals that are transmitted via the antennas 205a-205n.
The controller/processor 225 can include one or more processors or other processing devices that control the overall operation of the eNB 102. For example, the controller/processor 225 could control the reception of forward channel signals and the transmission of reverse channel signals by the RF transceivers 210a-210n, the RX processing circuitry 220, and the TX processing circuitry 215 in accordance with well-known principles. The controller/processor 225 could support additional functions as well, such as more advanced wireless communication functions. For instance, the controller/processor 225 could support beam forming or directional routing operations in which outgoing signals from multiple antennas 205a-205n are weighted differently to effectively steer the outgoing signals in a desired direction.
In one embodiment, the multiple antennas 205a-205n may be implemented by a multi-aperture lens antenna system comprising multiple lenses and multi/single-source for wireless communications. In such embodiment, the lens aperture includes at least two different-type lenses, each of which is designed to achieve different angular range.
Any of a wide variety of other functions could be supported in the eNB 102 by the controller/processor 225. In some embodiments, the controller/processor 225 includes at least one microprocessor or microcontroller. As described in more detail below, the eNB 102 includes circuitry, programming, or a combination thereof for processing beam patterns and angular coverage of planar lens antenna systems by employing multiple lenses and feed arrays.
For example, controller/processor 225 can be configured to execute one or more instructions, stored in memory 230, that are configured to cause the controller/processor to process uplink and downlink channels on unlicensed spectrum and/or licensed spectrum using a carrier aggregation scheme.
The controller/processor 225 is also capable of executing programs and other processes resident in the memory 230, such as an OS. The controller/processor 225 can move data into or out of the memory 230 as required by an executing process.
The controller/processor 225 is also coupled to the backhaul or network interface 235. The backhaul or network interface 235 allows the eNB 102 to communicate with other devices or systems over a backhaul connection or over a network. The interface 235 could support communications over any suitable wired or wireless connection(s). For example, when the eNB 102 is implemented as part of a cellular communication system (such as one supporting 5G, LTE, LTE-A, or LTE-U(LAA)), the interface 235 could allow the eNB 102 to communicate with other eNBs over a wired or wireless backhaul connection. When the eNB 102 is implemented as an access point, the interface 235 could allow the eNB 102 to communicate over a wired or wireless local area network or over a wired or wireless connection to a larger network (such as the Internet). The interface 235 includes any suitable structure supporting communications over a wired or wireless connection, such as an Ethernet or RF transceiver.
The memory 230 is coupled to the controller/processor 225. Part of the memory 230 could include a RAM, and another part of the memory 230 could include a flash memory or other ROM.
Although
As shown in
The RF transceiver 310 receives, from the antenna 305, an incoming RF signal transmitted by an eNB of the network 100. In one embodiment, the antenna 305 may be implemented by a multi-aperture lens antenna system comprising multiple lenses and multi/single-source for wireless communications. In such embodiment, the lens aperture includes at least two different-type lenses, each of which is designed to achieve different angular range.
The RF transceiver 310 down-converts the incoming RF signal to generate an intermediate frequency (IF) or baseband signal. The IF or baseband signal is sent to the RX processing circuitry 325, which generates a processed baseband signal by filtering, decoding, and/or digitizing the baseband or IF signal. The RX processing circuitry 325 transmits the processed baseband signal to the speaker 330 (such as for voice data) or to the processor 340 for further processing (such as for web browsing data).
The TX processing circuitry 315 receives analog or digital voice data from the microphone 320 or other outgoing baseband data (such as web data, e-mail, or interactive video game data) from the processor 340. The TX processing circuitry 315 encodes, multiplexes, and/or digitizes the outgoing baseband data to generate a processed baseband or IF signal. The RF transceiver 310 receives the outgoing processed baseband or IF signal from the TX processing circuitry 315 and up-converts the baseband or IF signal to an RF signal that is transmitted via the antenna 305.
The processor 340 can include one or more processors or other processing devices and execute the OS 361 stored in the memory 360 in order to control the overall operation of the UE 116. For example, the processor 340 could control the reception of forward channel signals and the transmission of reverse channel signals by the RF transceiver 310, the RX processing circuitry 325, and the TX processing circuitry 315 in accordance with well-known principles. In some embodiments, the processor 340 includes at least one microprocessor or microcontroller.
The processor 340 is also capable of executing other processes and programs resident in the memory 360, such as processes for processing beam patterns and angular coverage of planar lens antenna systems by employing multiple lenses and feed arrays.
The processor 340 can move data into or out of the memory 360 as required by an executing process. In some embodiments, the processor 340 is configured to execute the applications 362 based on the OS 361 or in response to signals received from eNBs or an operator. The processor 340 is also coupled to the I/O interface 345, which provides the UE 116 with the ability to connect to other devices, such as laptop computers and handheld computers. The I/O interface 345 is the communication path between these accessories and the processor 340.
The processor 340 is also coupled to the input device 350 and the display 355. The operator of the UE 116 can use the input device 350 to enter data into the UE 116. The display 355 may be a liquid crystal display, light emitting diode display, or other display capable of rendering text and/or at least limited graphics, such as from web sites.
The memory 360 is coupled to the processor 340. Part of the memory 360 could include a random access memory (RAM), and another part of the memory 360 could include a Flash memory or other read-only memory (ROM).
Although
According to this disclosure, as illustrated in
More specifically, the planar lens antenna system using a single lens aperture with patch array feed may be used to enhance performance of the antenna system. In one embodiment, multi-aperture lens antenna system includes more than 1 lens that is used with at least 1 subarray. For example, such a system may include a plurality of lenses positioned proximate to antenna element(s) where each of the lenses is positioned in an aperture through which one or more of the antenna element(s) emits one or more beam. As used herein, a multi-aperture planar-lens antenna system may be used instead of “multi-aperture antenna system” or “multi-aperture planar antenna system.”
The planar lens antenna system 400 illustrated in
As illustrated in
The aperture 415 includes the set of patch elements 420. In one embodiment, the set of patch elements 420 is implemented as a rectangular shape as illustrated in
The aperture 415 comprises the set of patch elements 420 to emit an input beam (such as 410a, 411a, 412a). In one embodiment, the aperture 415 is implemented as a single-aperture having a single phase profile (such as single type of lens). In another embodiment, the aperture 415 is implemented as multi-aperture having different phase profiles (such as multi-type of lenses). In such embodiment, each of lenses is designed to have different phase profile to emit the input beams (such as 410a, 411a, 412a) provided from the subarrays 405. Accordingly, the emitted beam patterns (such as 410b, 411b, 412b) through different lenses (such as the aperture 415, multi-aperture) have different beam patterns (such as wider, narrower, shorter and/or longer shape).
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The multi-aperture 1005 can be fed by multiple sources configured by the set of subarrays 1010, 1011, 1012 as illustrated in
As illustrated in
As illustrated in
For example, the multi-aperture multi-source lens antenna system 1000 illustrated in
In some embodiments, a multi-aperture lens antenna system where one lens is fed by more than one subarrays can improve beam steering capability for highly steered angles and a freedom of design in controlling beam resolution and interference.
As illustrated in
As illustrated in
More specifically, the beam 1230b includes two sub-beams that are emitted from different sources (such as through the subarray 1-1 and 1-2), but the beam 1230b shares the same-type of lens aperture (such as 1205). Similarly, the beam 1231b includes two sub-beams that are emitted from different sources (such as through the subarray 2-1 and 2-2), but the beam 1231b shares the same-type of lens aperture (such as 1205), and the beam 1232b includes two sub-beams that are emitted from different sources (such as through the subarray 3-1 and 3-2), but the beam 1232b shares the same-type of lens aperture (such as 1205). As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In some embodiments, multi-lens aperture single/multi-source antenna system including at least one lens sector that has a different phase profile than the others enables a wider angular coverage of beam steering and multiple beam radiation. In such embodiment, the multi-aperture single/multi-source antenna system may be used for an access network system requiring a wider scanning range.
In some embodiments, a multi-aperture lens antenna system is implemented using different types of lenses, for example, a conformal dielectric lens, a hybrid lens and a Fresnel lenses fed by a flat feed plane. In such embodiments, different types of lenses may be implemented as a curved 3D configuration (e.g., multi-aperture curved 3D lens antenna system, such as illustrated, for example, in
In some embodiments, while patch elements in a subarray is presented as a square-shape, a feed subarray configuration is applied for a combination of diverse-shape and type feed elements. In such embodiments, a shape of the patch elements may be a rectangular shape, an elliptical shape, a triangular shape, etc. In addition, the feed antenna (such as subarray) may be any type of antenna (such as patch, dipole, horn, etc.).
In some embodiments, a multi-aperture lens antenna system is extended for other beam shaping purpose such as beam broadening.
In some embodiments, a multi-aperture lens antenna system is fabricated and integrated with various platforms without strict requirements for a fabrication process such as a printed circuit board (PCB) process and a complementary metal-oxide semiconductor (CMOS) process.
None of the description in this application should be read as implying that any particular element, step, or function is an essential element that must be included in the claim scope. The scope of patented subject matter is defined only by the claims. Moreover, none of the claims is intended to invoke 35 U.S.C. § 112(f) unless the exact words “means for” are followed by a participle.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/115,912 filed on Feb. 13, 2015. The above-identified provisional patent application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20090315794 | Alamouti | Dec 2009 | A1 |
20100066639 | Ngyuen | Mar 2010 | A1 |
20120076498 | Sayeed et al. | Mar 2012 | A1 |
20140313090 | Oh et al. | Oct 2014 | A1 |
20150009080 | Oh et al. | Jan 2015 | A1 |
Entry |
---|
A Programmable Lens-Array Antenna With Monolithically Integrated MEMS Switches, by Chih-Chieh Cheng et al.; IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 8, Aug. 2009—pp. 1874-1884. |
Beam Scanning Using Flat Transformation Electromagnetic Focusing Lenses, by Do-Hoon Kwon et al.; IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009—pp. 1115-1118. |
Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements, by John Brady et al.; IEEE Transactions on Antennas and Propagation, vol. 61, No. 7, Jul. 2013—pp. 3814-3827. |
Enhancing the Directivity of Phased Array Antennas Using Lens-Arrays, by Abbas Abbaspour-Tamijani et al.; Progress in Electromagnetics Research M, vol. 29, 41-64, 2013—24 Pages. |
Number | Date | Country | |
---|---|---|---|
20160240923 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62115912 | Feb 2015 | US |