Embodiments disclosed herein relate in general to digital cameras and in particular to thin zoom digital cameras.
Multi-cameras are becoming a standard component of automotive sensor systems for advanced driver assistance systems (ADAS), along with radar, LiDAR, ultra-sound sensors and others. An automotive multi-camera setup usually comprises cameras with varying field-of-view (FOV), e.g. a dual-camera including one camera with a Wide (or “W”) FOV (“FOVW”) and one camera with a narrow FOV (“FOVT”) referred to as Telephoto or “Tele” (or “T”) camera or a triple-camera which additionally includes one camera with an Ultra-Wide (or “UW”) FOV (“FOVUW”). A multi-camera enables capture of areas with highly relevant image information, usually at the center of the FOV (e.g. a street segment and cars ahead), with a higher resolution than some surroundings (e.g. the sidewalk area) which are captured with a lower resolution. Henceforth, the term “resolution” refers to image spatial resolution.
Adding depth information from camera data can increase the quality of ADAS operations significantly. This information can be provided by stereo camera setups. Known stereo camera setups are based on two different designs: a first design using two cameras having identical FOVs (and identical additional camera components, such as optics block and image sensor), and a second design using two or more cameras having different FOVs. The first design has the advantage that the full resolution of each of the two cameras can be exploited for depth calculation from stereo camera data. The disadvantages are the need for an additional camera dedicated to stereo imaging only. The second design has the advantage that multi-cameras including different FOVs may be available in ADAS anyway. The disadvantages are that the camera with the lower resolution limits the depth resolution of the entire stereo camera system, and that the narrow FOV camera limits the FOV where stereo image data is available.
There is therefore a need for, and it would be beneficial to have a stereo camera system that supplies high resolution stereo image data over a large FOV.
Embodiments disclosed herein teach the use of stereo camera setups with two scanning Tele cameras, each comprising an optical path folding element (OPFE), which are positioned along and separated by a baseline, and which acquire depth by scanning in a direction orthogonal to the baseline based on OPFE movement in one dimension, in order to not translate scanning errors into an error of stereo depth estimation.
In various exemplary embodiments there are provided systems comprising a first scanning camera operative to provide first image data of an object or scene and having a first native field of view FOV1, the first scanning camera operative to scan in a first plane over a solid angle larger than the native FOV1; a second scanning camera operative to provide second image data of the object or scene and having a second native field of view FOV2, the second scanning camera operative to scan in a second plane over a solid angle larger than the native FOV2, wherein the first plane and the second plane are substantially parallel, wherein the first and second scanning cameras have respective centers that lie on a first axis that is perpendicular to the first and second planes and are separated by a distance B from each other; and a camera controller operatively coupled to the first and second scanning cameras and configured to control the scanning of each camera.
In some embodiments, the first and second scanning cameras are folded scanning cameras, each camera including a respective OPFE.
In some embodiments, the scanning is performed by rotating the respective OPFE.
In some embodiments, the rotating of the respective OPFE is around an axis substantially parallel to the first axis.
In some embodiments, the camera controller is configured to control the scanning of each camera autonomously.
In some embodiments, the control of the scanning of each camera is based on use of the first image data and/or the second image data as input.
In some embodiments, the camera controller is configured to calculate depth information from the first image data and/or from the second image data.
In some embodiments, the camera controller is configured to calculate depth information from stereo image data derived from the first and the second image data.
In some embodiments, 2 cm>B>20 cm. In some embodiments, 7.5 cm>B>15 cm. In some embodiments, FOV1=FOV2.
In some embodiments, a system comprises a third camera operative to provide third image data of the object or scene and having a third field of view FOV3 larger than FOV1 and FOV2.
In some embodiments, the first camera or the second camera has a respective resolution at least two times higher than a resolution of the third camera.
In some embodiments, the control of the scanning of each camera is based on use of the third image as input.
In some embodiments, the system further comprises a sensor selected from the group consisting of a radar sensor, an ultra-sound sensor, and a light detection and ranging sensor.
In some embodiments, the control of the scanning of each camera is based on use of image data from the first camera and/or the second camera and/or the sensor.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way.
Two different native Tele FOV 106″ positions and their relationship to a Wide FOV 104 are shown. Native FOVT 106″ may scan specific segments of the FOVW (104), the entire FOVW, or segments of a scene that are out of the FOVW. The FOV scanning may for example require a time scale of about 1-50 ms for scanning 2°-5° and of about 2-100 ms for scanning 10-25°.
An automotive multi-camera comprising a scanning Tele camera can provide high-resolution image data over a large FOV. An automotive multi-camera comprising two scanning Tele cameras can provide high-resolution visual image data for a large FOV of a scene with a high rate of frames per second (fps), or high-resolution stereo image data.
In other examples, the system described herein may not be included in a vehicle, but in any other system using two scanning cameras, e.g. for surveillance.
In some embodiments, the 1st and 2nd Tele cameras may be folded scanning Tele cameras, the scanning performed in a X-Z plane, i.e. orthogonal to baseline B. They may scan a scene by rotating one or more OPFEs. For example, the FOVs of cameras 302 and 304 may scan in the X-Z plane by rotating an OPFE around a rotation axis substantially parallel to the Y-axis (and baseline B).
In some embodiments, the first Tele camera may be a folded scanning Tele camera and the second Tele camera may be a (non-scanning) Tele camera having a fixed FOV.
In some embodiments, the FOV scanning may be in in a direction parallel to baseline B, i.e. in the X-Z plane by rotating an OPFE around a rotation axis substantially parallel to the Z-axis.
In some embodiments, the FOV scanning may be performed in two dimensions (2D). For example, the FOVs of cameras 302 and 304 may scan in the X-Z plane and in the X-Y plane by rotating an OPFE around, respectively, a rotation axis substantially parallel to the Y-axis and around a rotation axis substantially parallel to the Z-axis.
Wide camera 306 includes an image sensor 322 and a lens 324 with a lens optical axis 326. In an embodiment, lens 324 may have a fixed (constant) effective focal length EFLW. FOVW may be 30-130 degrees in the horizontal vehicle facing plane (i.e. a plane parallel to the road surface). Exemplarily (see
In some embodiments and as shown in
In some embodiments, Tele camera 302 and/or Tele camera 304 may include two or more OPFEs. FOV scanning may be performed by rotating one OPFE, two OPFEs, or more than two OPFEs out of the two or more OPFEs. In
In some examples (as in
According to some examples, measures-of-action or responses of ADAS 210 or 210′ may include one or more or a combination of the following: changing the speed and/or course of vehicle 400, operating an internal alarm to a driver, operating an external alarm, sending data information to, or calling an internet or cloud based service, the police, a road assistance service, etc.
In an example shown in
In step 520, the processing unit identifies the OOI with FOV>native FOVT and divides this FOV into N segments, each segment n having a FOVn equal to or smaller than the native FOVT. In step 522, in the process of scanning a FOV sequentially, the processing unit directs 1st and 2nd Tele cameras to have their native FOVT face the nth FOV of the OOI. In step 524, the 1st and 2nd Tele cameras acquire stereo images (i.e. images with some or significant FOV overlap) of the nth image segment in the OOI. In step 526, the processing unit receives the first and second Tele image data, thus having both Tele information and stereo information on OOI 402. In step 528, the processing unit calculates a high resolution depth map based on the stereo data. In step 530, the processing unit directs the 1st and 2nd Tele cameras to have their respective native FOVTs face the (n+1)th FOV of the OOI. In step 532, the 1st and 2nd Tele cameras acquire stereo images of the (n+1)th image segment of the OOI.
Assuming all intrinsic and extrinsic parameters of the 1st and 2nd scanning Tele cameras are known, an object's distance Z can be calculated using equation 1:
where Z is depth estimation to be calculated by a processing unit, f is the camera's focal length or EFL, B is the baseline, D is disparity in pixels, and ps is the pixel size of the image sensor. The disparity constitutes the input variable for the depth estimation according to equation 1. B, ps and f are known and part of the calibration set. A depth estimation error Δ as function of disparity error ΔD is given by equation 2:
B is oriented vertically (with respect to a horizontally oriented street). For typical stereoscopic systems, ΔD is limited by the quality of the system's calibration set, e.g. its mechanical stability (towards temperature, mechanical shocks such as drop, etc.). For a stereoscopic system based on scanning cameras, ΔD may additionally result from a position error resulting from the scanning process (e.g. due to a delay between scanning processes of the Tele cameras). The position error for a certain scanning direction lies within a plane spanned by B and an object point. In a system as described herein, B is oriented orthogonally to a scanning direction, so that a scanning caused position error originating in a scanning error is not translated into disparity error, and thus does not induce an error into the depth map estimation. Equation 2 shows that a system based on Tele cameras (characterized by large EFLs) as described herein has better accuracy than a system based on Wide cameras (assuming identical additional parameters). This allows the design of systems with small baselines (i.e. small overall dimensions) that still exhibit decent accuracies.
Embodiments that comprise two Tele cameras that have an identical native FOVs have the advantage over systems using two cameras with different native FOVs in that a calibration of the stereo image data can be done by “line-to-line synchronization”, as known in the art.
In a stereoscopic camera system comprising two Tele cameras that scan a FOV in a direction parallel to a baseline vector and used to determine a depth map from the disparity in pixels, the accuracy of a depth map depends on the accuracy of a position sensor of the scanning mechanism. Assume that the first and the second Tele cameras have an EFL=22 mm, that B=120 mm, and that each Tele image sensor has 3000 horizontal pixels. A range of about 60 degrees is scanned in the horizontal direction. Typically the scanning is enabled by an OPFE, the position of the OPFE is measured by a Hall sensor rigidly coupled to the OPFE, and a sensing magnet that is rigidly coupled to a housing surrounding the OPFE (or vice versa). A Hall sensor may supply a position of an OPFE with 12 bit information. Based on these values, the disparity error is 2 pixels (solid line) in a best case scenario (theoretical limit given by Hall sensor 12 bit information).
In conclusion and exemplarily, an overall five-fold better depth estimation accuracy may be expected using a system and method described herein. Also, a stereo camera system using Tele cameras as described herein has the advantage over a stereo camera system using large FOV Wide cameras in that there is significantly less “wide-angle distortion” as known in the art. Wide-angle distortion describes the fact that objects close to the camera appear abnormally large relative to more distant objects.
For the sake of clarity the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 1% over or under any specified value.
While this disclosure describes a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of such embodiments may be made. In general, the disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
All references mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual reference was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present application.
This application is a continuation application of U.S. patent application Ser. No. 17/771,047 filed Apr. 22, 2022, which is a 371 application from international patent application PCT/IB2020/062463 filed Dec. 27, 2020, and is related to and claims the benefit of U.S. provisional patent application No. 62/958,488 filed Jan. 8, 2020, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2106752 | Land | Feb 1938 | A |
2354503 | Cox | Jul 1944 | A |
2378170 | Aklin | Jun 1945 | A |
2441093 | Aklin | May 1948 | A |
3388956 | Eggert et al. | Jun 1968 | A |
3524700 | Eggert et al. | Aug 1970 | A |
3558218 | Grey | Jan 1971 | A |
3864027 | Harada | Feb 1975 | A |
3942876 | Betensky | Mar 1976 | A |
4134645 | Sugiyama et al. | Jan 1979 | A |
4338001 | Matsui | Jul 1982 | A |
4465345 | Yazawa | Aug 1984 | A |
4792822 | Akiyama et al. | Dec 1988 | A |
5000551 | Shibayama | Mar 1991 | A |
5327291 | Baker et al. | Jul 1994 | A |
5331465 | Miyano | Jul 1994 | A |
5969869 | Hirai et al. | Oct 1999 | A |
6014266 | Obama et al. | Jan 2000 | A |
6035136 | Hayashi et al. | Mar 2000 | A |
6147702 | Smith | Nov 2000 | A |
6169636 | Kreitzer | Jan 2001 | B1 |
6654180 | Ori | Nov 2003 | B2 |
7187504 | Horiuchi | Mar 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7515351 | Chen et al. | Apr 2009 | B2 |
7564635 | Tang | Jul 2009 | B1 |
7643225 | Tsai | Jan 2010 | B1 |
7660049 | Tang | Feb 2010 | B2 |
7684128 | Tang | Mar 2010 | B2 |
7688523 | Sano | Mar 2010 | B2 |
7692877 | Tang et al. | Apr 2010 | B2 |
7697220 | Iyama | Apr 2010 | B2 |
7738186 | Chen et al. | Jun 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7813057 | Lin | Oct 2010 | B2 |
7821724 | Tang et al. | Oct 2010 | B2 |
7826149 | Tang et al. | Nov 2010 | B2 |
7826151 | Tsai | Nov 2010 | B2 |
7869142 | Chen et al. | Jan 2011 | B2 |
7898747 | Tang | Mar 2011 | B2 |
7916401 | Chen et al. | Mar 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7957075 | Tang | Jun 2011 | B2 |
7957076 | Tang | Jun 2011 | B2 |
7957079 | Tang | Jun 2011 | B2 |
7961406 | Tang et al. | Jun 2011 | B2 |
8000031 | Tsai | Aug 2011 | B1 |
8004777 | Souma | Aug 2011 | B2 |
8077400 | Tang | Dec 2011 | B2 |
8149523 | Ozaki | Apr 2012 | B2 |
8218253 | Tang | Jul 2012 | B2 |
8228622 | Tang | Jul 2012 | B2 |
8233224 | Chen | Jul 2012 | B2 |
8253843 | Lin | Aug 2012 | B2 |
8279537 | Sato | Oct 2012 | B2 |
8363337 | Tang et al. | Jan 2013 | B2 |
8395851 | Tang et al. | Mar 2013 | B2 |
8400717 | Chen et al. | Mar 2013 | B2 |
8451549 | Yamanaka et al. | May 2013 | B2 |
8503107 | Chen et al. | Aug 2013 | B2 |
8514502 | Chen | Aug 2013 | B2 |
8570668 | Takakubo et al. | Oct 2013 | B2 |
8718458 | Okuda | May 2014 | B2 |
8780465 | Chae | Jul 2014 | B2 |
8810923 | Shinohara | Aug 2014 | B2 |
8854745 | Chen | Oct 2014 | B1 |
8958164 | Kwon et al. | Feb 2015 | B2 |
9185291 | Shabtay | Nov 2015 | B1 |
9229194 | Yoneyama et al. | Jan 2016 | B2 |
9235036 | Kato et al. | Jan 2016 | B2 |
9279957 | Kanda et al. | Mar 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9488802 | Chen et al. | Nov 2016 | B2 |
9568712 | Dror et al. | Feb 2017 | B2 |
9678310 | Iwasaki et al. | Jun 2017 | B2 |
9817213 | Mercado | Nov 2017 | B2 |
11689708 | Gigushinski | Jun 2023 | B2 |
20020118471 | Imoto | Aug 2002 | A1 |
20030048542 | Enomoto | Mar 2003 | A1 |
20050041300 | Oshima et al. | Feb 2005 | A1 |
20050062346 | Sasaki | Mar 2005 | A1 |
20050128604 | Kuba | Jun 2005 | A1 |
20050141103 | Nishina | Jun 2005 | A1 |
20050168840 | Kobayashi et al. | Aug 2005 | A1 |
20050270667 | Gurevich et al. | Dec 2005 | A1 |
20060238902 | Nakashima et al. | Oct 2006 | A1 |
20060275025 | Labaziewicz et al. | Dec 2006 | A1 |
20070229983 | Saori | Oct 2007 | A1 |
20070247726 | Sudoh | Oct 2007 | A1 |
20070253689 | Nagai et al. | Nov 2007 | A1 |
20080056698 | Lee et al. | Mar 2008 | A1 |
20080094730 | Toma et al. | Apr 2008 | A1 |
20080094738 | Lee | Apr 2008 | A1 |
20080291531 | Heimer | Nov 2008 | A1 |
20080304161 | Souma | Dec 2008 | A1 |
20090002839 | Sato | Jan 2009 | A1 |
20090067063 | Asami et al. | Mar 2009 | A1 |
20090122423 | Park et al. | May 2009 | A1 |
20090141365 | Jannard et al. | Jun 2009 | A1 |
20090147368 | Oh et al. | Jun 2009 | A1 |
20090222061 | Culp | Sep 2009 | A1 |
20090225438 | Kubota | Sep 2009 | A1 |
20090279191 | Yu | Nov 2009 | A1 |
20090303620 | Abe et al. | Dec 2009 | A1 |
20100033844 | Katano | Feb 2010 | A1 |
20100060995 | Yumiki et al. | Mar 2010 | A1 |
20100165476 | Eguchi | Jul 2010 | A1 |
20100214664 | Chia | Aug 2010 | A1 |
20100277813 | Ito | Nov 2010 | A1 |
20110001838 | Lee | Jan 2011 | A1 |
20110032409 | Rossi et al. | Feb 2011 | A1 |
20110080655 | Mori | Apr 2011 | A1 |
20110102911 | Iwasaki | May 2011 | A1 |
20110115965 | Engelhardt et al. | May 2011 | A1 |
20110149119 | Matsui | Jun 2011 | A1 |
20110157430 | Hosoya et al. | Jun 2011 | A1 |
20110188121 | Goring et al. | Aug 2011 | A1 |
20110249347 | Kubota | Oct 2011 | A1 |
20120062783 | Tang et al. | Mar 2012 | A1 |
20120069455 | Lin et al. | Mar 2012 | A1 |
20120092777 | Tochigi et al. | Apr 2012 | A1 |
20120105708 | Hagiwara | May 2012 | A1 |
20120147489 | Matsuoka | Jun 2012 | A1 |
20120154929 | Tsai et al. | Jun 2012 | A1 |
20120194923 | Um | Aug 2012 | A1 |
20120229920 | Otsu et al. | Sep 2012 | A1 |
20120262806 | Lin et al. | Oct 2012 | A1 |
20130057971 | Zhao et al. | Mar 2013 | A1 |
20130088788 | You | Apr 2013 | A1 |
20130208178 | Park | Aug 2013 | A1 |
20130271852 | Schuster | Oct 2013 | A1 |
20130279032 | Suigetsu et al. | Oct 2013 | A1 |
20130286488 | Chae | Oct 2013 | A1 |
20140022436 | Kim et al. | Jan 2014 | A1 |
20140063616 | Okano et al. | Mar 2014 | A1 |
20140092487 | Chen et al. | Apr 2014 | A1 |
20140139719 | Fukaya et al. | May 2014 | A1 |
20140146216 | Okumura | May 2014 | A1 |
20140160581 | Cho et al. | Jun 2014 | A1 |
20140204480 | Jo et al. | Jul 2014 | A1 |
20140240853 | Kubota et al. | Aug 2014 | A1 |
20140285907 | Tang et al. | Sep 2014 | A1 |
20140293453 | Ogino et al. | Oct 2014 | A1 |
20140362274 | Christie et al. | Dec 2014 | A1 |
20150022896 | Cho et al. | Jan 2015 | A1 |
20150029601 | Dror et al. | Jan 2015 | A1 |
20150116569 | Mercado | Apr 2015 | A1 |
20150138431 | Shin et al. | May 2015 | A1 |
20150153548 | Kim et al. | Jun 2015 | A1 |
20150168667 | Kudoh | Jun 2015 | A1 |
20150205068 | Sasaki | Jul 2015 | A1 |
20150244942 | Shabtay et al. | Aug 2015 | A1 |
20150253532 | Lin | Sep 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150323757 | Bone | Nov 2015 | A1 |
20150373252 | Georgiev | Dec 2015 | A1 |
20150373263 | Georgiev et al. | Dec 2015 | A1 |
20160033742 | Huang | Feb 2016 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160062084 | Chen et al. | Mar 2016 | A1 |
20160062136 | Nomura et al. | Mar 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160085089 | Mercado | Mar 2016 | A1 |
20160105616 | Shabtay et al. | Apr 2016 | A1 |
20160187631 | Choi et al. | Jun 2016 | A1 |
20160202455 | Aschwanden et al. | Jul 2016 | A1 |
20160212333 | Liege et al. | Jul 2016 | A1 |
20160241756 | Chen | Aug 2016 | A1 |
20160291295 | Shabtay | Oct 2016 | A1 |
20160306161 | Harada et al. | Oct 2016 | A1 |
20160313537 | Mercado | Oct 2016 | A1 |
20160341931 | Liu et al. | Nov 2016 | A1 |
20160349504 | Kim et al. | Dec 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20170023778 | Inoue | Jan 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170102522 | Jo | Apr 2017 | A1 |
20170115471 | Shinohara | Apr 2017 | A1 |
20170153422 | Tang et al. | Jun 2017 | A1 |
20170160511 | Kim et al. | Jun 2017 | A1 |
20170199360 | Chang | Jul 2017 | A1 |
20170276911 | Huang | Sep 2017 | A1 |
20170310952 | Adomat et al. | Oct 2017 | A1 |
20170329108 | Hashimoto | Nov 2017 | A1 |
20170337703 | Wu et al. | Nov 2017 | A1 |
20180024319 | Lai et al. | Jan 2018 | A1 |
20180059365 | Bone et al. | Mar 2018 | A1 |
20180059376 | Lin et al. | Mar 2018 | A1 |
20180081149 | Bae et al. | Mar 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180137648 | Kang | May 2018 | A1 |
20180149835 | Park | May 2018 | A1 |
20180196236 | Ohashi et al. | Jul 2018 | A1 |
20180196238 | Goldenberg et al. | Jul 2018 | A1 |
20180217475 | Goldenberg et al. | Aug 2018 | A1 |
20180218224 | Olmstead et al. | Aug 2018 | A1 |
20180224630 | Lee et al. | Aug 2018 | A1 |
20180268226 | Shashua et al. | Sep 2018 | A1 |
20180364033 | Döring | Dec 2018 | A1 |
20190025549 | Sueh et al. | Jan 2019 | A1 |
20190025554 | Son | Jan 2019 | A1 |
20190075284 | Ono | Mar 2019 | A1 |
20190086638 | Lee | Mar 2019 | A1 |
20190107651 | Sade | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190170965 | Shabtay | Jun 2019 | A1 |
20190215440 | Rivard et al. | Jul 2019 | A1 |
20190353874 | Yeh et al. | Nov 2019 | A1 |
20190369242 | Wang | Dec 2019 | A1 |
20200084358 | Nadamoto | Mar 2020 | A1 |
20200192069 | Makeev et al. | Jun 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20200333691 | Shabtay et al. | Oct 2020 | A1 |
20210263276 | Huang et al. | Aug 2021 | A1 |
20210364746 | Chen | Nov 2021 | A1 |
20210396974 | Kuo | Dec 2021 | A1 |
20220046151 | Shabtay et al. | Feb 2022 | A1 |
20220066168 | Shi | Mar 2022 | A1 |
20220113511 | Chen | Apr 2022 | A1 |
20220232167 | Shabtay et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
101634738 | Jan 2010 | CN |
102147519 | Aug 2011 | CN |
102193162 | Sep 2011 | CN |
102466865 | May 2012 | CN |
102466867 | May 2012 | CN |
102147519 | Jan 2013 | CN |
103576290 | Feb 2014 | CN |
103698876 | Apr 2014 | CN |
104297906 | Jan 2015 | CN |
104407432 | Mar 2015 | CN |
105467563 | Apr 2016 | CN |
105657290 | Jun 2016 | CN |
106680974 | May 2017 | CN |
104570280 | Jun 2017 | CN |
S54157620 | Dec 1979 | JP |
S59121015 | Jul 1984 | JP |
6165212 | Apr 1986 | JP |
S6370211 | Mar 1988 | JP |
406059195 | Mar 1994 | JP |
H07325246 | Dec 1995 | JP |
H07333505 | Dec 1995 | JP |
H09211326 | Aug 1997 | JP |
H11223771 | Aug 1999 | JP |
3210242 | Sep 2001 | JP |
2004334185 | Nov 2004 | JP |
2006195139 | Jul 2006 | JP |
2007133096 | May 2007 | JP |
2007164065 | Jun 2007 | JP |
2007219199 | Aug 2007 | JP |
2007306282 | Nov 2007 | JP |
2008111876 | May 2008 | JP |
2008191423 | Aug 2008 | JP |
2010032936 | Feb 2010 | JP |
2010164841 | Jul 2010 | JP |
2011145315 | Jul 2011 | JP |
2012203234 | Oct 2012 | JP |
2013003317 | Jan 2013 | JP |
2013003754 | Jan 2013 | JP |
2013101213 | May 2013 | JP |
2013105049 | May 2013 | JP |
2013106289 | May 2013 | JP |
2013148823 | Aug 2013 | JP |
2014142542 | Aug 2014 | JP |
2017116679 | Jun 2017 | JP |
2018059969 | Apr 2018 | JP |
2019113878 | Jul 2019 | JP |
20090019525 | Feb 2009 | KR |
20090131805 | Dec 2009 | KR |
20110058094 | Jun 2011 | KR |
20110115391 | Oct 2011 | KR |
20120068177 | Jun 2012 | KR |
20140135909 | May 2013 | KR |
20140023552 | Feb 2014 | KR |
20160000759 | Jan 2016 | KR |
101632168 | Jun 2016 | KR |
20160115359 | Oct 2016 | KR |
M602642 | Oct 2020 | TW |
2013058111 | Apr 2013 | WO |
2013063097 | May 2013 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages. |
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages. |
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages). |
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages. |
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages. |
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages. |
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56. |
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017. |
Number | Date | Country | |
---|---|---|---|
20230283758 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
62958488 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17771047 | US | |
Child | 18316269 | US |