The present disclosure relates to power driven appliances, and more particularly, to torque transmission, via a flexible drive shaft, from relocatable power sources to a plurality of power driven appliances, and to mechanical/functional connections of modular, removable appliances to power sources.
A great many appliances such as hand held tools and portable equipment such as generators, pumps, and the like, are motor driven, either by electric motors or by internal combustion engines. In many cases, each powered appliance is commercially provided with its own dedicated power plant and/or source (for example, electric motor or internal combustion engine). Consequently, capital costs, bulk, and weight of the many appliances may be maximized. Logical physical layout of the many appliances is often difficult to achieve.
Modular appliances having removable and replaceable power plants have been proposed. However, these frequently require tedious assembly such as installation of threaded fasteners and the like, often not lending themselves to a logical physical layout facilitating moving workpieces from one appliance to another.
There remains a need for more practical ways of establishing mechanical and/or functional connections of appliances to their respective power plants/sources, for improving replaceability of power plants/sources and power driven appliances, and for making power/source plant-appliance combinations more compact and versatile.
The present disclosure addresses the above stated situation by providing a multi-application power unit for selectively driving a plurality of power driven appliances from one or more power plants/sources (hereinafter “power plant”). The power driven appliances are mounted to a platform, for example, and selectively coupled to a power plant. The power plant rolls or slides along the platform into engagement with a selected power driven appliance. Thus, one power plant can be used to power a plurality of appliances, and can be expeditiously connected to a different appliance. This arrangement enables a compact work station to be constructed, wherein a number of different tasks can be accomplished by the several appliances. Also, capital costs, weight, bulk, and need for replacement parts are all minimized. It is an object of the disclosure to provide improved elements and arrangements thereof by apparatus for the purposes described which is inexpensive, dependable, and fully effective in accomplishing its intended purposes.
The present disclosure further addresses the above stated situation by providing a multi-application power unit for selectively driving a plurality of power driven appliances, which may also comprise a plurality of power driven appliances. A modular power plant and power driven appliance system enables a power driven appliance to be removably positioned in a drive position, the latter enabling the power driven appliance to be driven by a power plant. A flexible drive shaft for transmitting torque from a power plant to a power driven appliance is disclosed. A power device including a flexible drive shaft comprises a power associated apparatus and a flexible drive shaft connected thereto. It is an object of the disclosure to provide improved elements and arrangements thereof by apparatus for the purposes described which is inexpensive, dependable, and fully effective in accomplishing its intended purposes.
The present disclosure also addresses the above stated situation by providing a flexible drive shaft for transmitting torque from a power plant to a power driven appliance. The power driven appliance may be modular, or readily decoupled from the power plant, or alternatively, may be permanently coupled to the power plant, with the flexible drive shaft serially connecting the appliance and the power plant. A power device including a flexible drive shaft comprises a power associated apparatus, which may be the power plant, the appliance, or both, and the flexible drive shaft connected thereto. A feature of the flexible driveshaft is incorporation of an internal stiffener embedded within the outer wall of the flexible driveshaft. This feature opposes kinking which would otherwise be possible as bending is incorporated into the layout of the flexible driveshaft. It is an object of the disclosure to provide improved elements and arrangements thereof by apparatus for the purposes described which is inexpensive, dependable, and fully effective in accomplishing its intended purposes.
These and other objects of the present disclosure will become readily apparent upon further review of the following specification and drawings.
Various objects, features, and attendant advantages of the present disclosure will become more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
Referring first to
In summary, a plurality of power driven appliances 114 may be mounted to platform 108, while power plant 102 is movable from one power driven appliance 114 to another. Moving power plant 102 into a selectable power plant position causes torque transfer to an engaged power driven appliance 114, as will be described hereinafter.
The variable position power plant engagement may comprise a track system 110 entrapping the at least one power plant 102 by interference fit. Track system 110 may comprise a plurality of channels 115 along which power plant 102 may slide as it is moved from one selectable power plant position 112 to another.
Continuing to refer to
Referring specifically to
The variable position power plant engagement may comprise a turntable (not shown), to which power plant 102 is rotatably fixed. Rotation causes power plant 102 to present its associated power connection element 106 to be accessible at a new or different selectable power plant position 112, for connection to a different power driven appliance 114. This situation would apply where platform 108 is relatively small compared to e.g.
Each selectable power plant position 112 (called out in
Power connection element 106 is an element non-circular in cross section through a rotational axis of output shaft 104, which can engage and drive a corresponding non-circular power connection element. In the example of
Platform 108 is a structural member for supporting power plant 102, power driven appliances 114, and other apparatus for operating multi-application unit 100. Platform 108 may or may not have a flat upper surface, for example, comprising an open frame (not shown).
Power driven appliances 114 may include any tool or other device for performing useful work, which requires movement under power to function. Examples include AC and DC generators, high volume, low pressure pumps such as irrigation pumps, low volume, high pressure pumps such as pressure washer pumps, hydraulic pumps, other pumps, vacuum pumps, air compressors, cutting appliances such as table or bench saws, grinders, and illumination units including both generator and also lighting elements, among others.
Multi-application power unit 100 may further comprise a plurality of power driven appliances 114 removably attachable to and coupled to platform 108. Each one of the plurality of power driven appliances 114 is located proximate one of the plurality of selectable power plant positions 112 such that power plant 102 can be moved into drivable engagement with any one of power driven appliances 114 when the one power driven appliance 114 is coupled to platform 108 at one of selectable power plant positions 112.
In track system 110, channels 115 may be arrayed orthogonally. This results in a compact array of selectable power plant positions 112 for a platform 108 of any given size.
As depicted in
The at least two parallel paths may comprise three parallel paths. As shown in
Referring particularly to
Manual mover 122 may comprises a lever 124 movable to at least two active positions, wherein in each of the at least two active positions, lever 124 has moved power plant 102 to coupling proximity to one power driven appliance 114 when power driven appliance 114 has been fastened to platform 108 at a selectable power plant position 112. Lever 124 facilitates one handed movement of power plant 102 from one location to another. Lever 124 may terminate in a yoke (not shown) which engages a pin (e.g., corresponding to pin 146 in
Manual mover 122 may comprise a gate assembly 128 having at least two end slots 130, 134 dimensioned and configured to receive lever 124 and to constrain lever 124 to move along a travel path wherein lever 124 can move power plant 102 selectively to one of the active positions at one end slot 130 or 134 and to a second one of the active positions at the other end slot 134 or 130. Constraining the travel path of the lever allows a user to move power plant 102 with less concentration, and assures that power plant 102 will be moved where intended.
As an alternative to manual mover 122, for example for use in environments wherein power plant 102 is not readily accessible, position of power plant 102 relative to power driven appliance 114 may be managed remotely, such as by a hydraulic actuator (not shown).
In track system 110, each of the at least two active positions may be linearly opposed to another of the at least two positions, whereby power plant 102 can be connected selectively to two power driven appliances 114 by linear motion. This is both easier for a user, and also reduces likelihood of lever related components from wearing and becoming susceptible to misalignments over time.
Referring specifically to
Gate assembly 128 may include an intermediate slot 132 between two end slots 130, 134, wherein moving lever 124 to occupy intermediate slot 132 moves power plant 102 to a neutral position wherein no power driven appliances 114 will be engaged. This permits power plant 102 to remain running even when operation of a power driven appliance is not desired.
Turning now to
As shown in
Also referring to
Referring also to
Where used with boats, multi-application unit 100 may be used to selectively drive for example a generator or a limited duty motor, such as a trolling motor or standby or spare motor.
Multi-application power unit 100 may be utilized as a stationary device, such as a free standing work station, with or without legs, which is used in one location, or which may be integrated into a building or other premise. Alternatively, multi-application power unit 100 may be mobile, for example having wheels, such as being a wheeled trailer with a hitch (not shown). Multi-application power unit 100 may be integrated into an aircraft or a water craft, either permanently fixed, or alternatively, removably installed.
In production models of multi-application power unit 100, power connection element 106 and splined socket 116 would be covered by guards (not shown).
As shown in
Both the power plant and also the power driven appliance may be modular, and may be freely exchanged for other power plants and power driven appliances.
Referring to
A first power associated module 212 is manually securable to and releasable from a first torque transfer connector (e.g., socket 208) of first torque transfer element 238, wherein first power associated module 212 comprises one of a power plant and a power driven appliance. A second power associated module 202 is manually securable to a torque transfer connector (e.g., socket 208) of second torque transfer element 230. Second power associated module 202 comprises another one of a power plant and a power driven appliance. That is, for modular power plant and power driven appliance kit 200 to be useful, it must have one power plant and one power driven appliance.
It will be appreciated that the first and second connectors align the power associated module relative to chassis 204, and also support the weight thereof, even under dynamic conditions of use. Alignment is important because of the necessity of aligning rotating torque transmission components.
First support 210 and second support 218 have been illustrated as rectangular. However, in some embodiments, first support and second support 218 may have other configurations, such as octagonal, circular, and others. Support wall 210 and corresponding support wall 218 of first power associated module 212 are configured to enable first power associated module 212 to be indexably coupled to chassis 204. This feature enables a great many indexable positions of a power driven appliance (shown as modular unit 212 in
Unless otherwise indicated, the terms “first”, “second”, etc., are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the times to which these terms refer. Moreover, reference to, e.g., a “second” item does not either require or preclude the existence of, e.g., a “first” or lower-numbered item, and/or, e.g., a “third” or higher-numbered item.
Modular power plant and power driven appliance kit 200 may further comprise at least two wheels 224 rotatably coupled to chassis 204, to enable chassis 204 to be rolled along a ground surface (not shown), and a handle 220 coupled to chassis 204. Handle 220 is configured to enable maneuvering chassis 204 along the ground by hand. In the example of
The first connector (e.g., wall 210) is dimensioned and configured to hold first power associated module 212 in torque transfer relation to first torque transfer element 238, and to enable sliding engagement of first power associated module 212 with first torque transfer element 238. In the example of
It should be noted at this point that orientational terms such as above, over, and below, etc., refer to the subject drawing as viewed by an observer. The drawing figures depict their subject matter in orientations of normal use, which could obviously change with changes in body posture of the user and position of depicted apparatus. Therefore, orientational terms must be understood to provide semantic basis for purposes of description only, and do not imply that their subject matter can be used only in one position.
The first connector further comprises a first support wall 210 capable of supporting the first power associated module 212 on the chassis 204 in an operable position under operating conditions. An operating position is a position in which torque is operably connected between the power associated modules actually installed on and used with modular power plant and power driven appliance kit 200. Under operating conditions, the powered appliance is driven by torque from the power plant.
The modular power plant and power driven appliance kit 200 may further comprise a second support wall (not shown, but similar to first support wall 210) capable of supporting the second power associated module 202 on the chassis 204 in the operable position under operating conditions, and a transmission (232, 234, 236, seen in
Referring particularly to
To accommodate more power, the arrangement using drive belt 236 may be replaced by a system employing intermeshing gears (not shown).
In the modular power plant and power driven appliance kit 200, the first connector (e.g., support wall 210) and the second connector (e.g., another wall 210) are configured to engage respectively first power associated module 212 directly above the first torque transfer element (e.g., socket 208) and second power associated module 202 directly above the second torque transfer element (e.g., the other socket 208) when the modular power plant and power driven appliance kit 200 is in an operable position. Also, first torque transfer element 238 has a vertical rotational axis 205 and the second torque transfer element 230 has a vertical rotational axis 207 when modular power plant and power driven appliance kit 200 is in the operable position. This relationship enables both the power plant and also the power driven appliance to be lowered onto chassis 204 and immediately become both stably supported and also suitably connected to torque transferring components.
Modular power plant and power driven appliance kit 200 is in the operable position when wheels 224 of chassis 204 contact the ground from thereabove. First power associated module 212 has a vertical rotational axis 205 and second power associated module 202 has a vertical rotational axis 207 when engaging the respective first torque transfer element and the second torque transfer element (e.g., sockets 208). Vertical rotational axes 205, 207 enable both the power plant and also the power driven appliance to be lowered onto chassis 204, when chassis 204 is in a position to be wheeled along the ground.
Referring also to
When lowering a power associated module 202 or 212 into engagement with socket 208, power associated module 202 or 212 is held in appropriate alignment by telescoping fit of complementing support components. To this end, modular power plant and power driven appliance kit 200 further comprises a second support (e.g., wall 218,
Stability of a power associated module 202 or 212 may rely on gravity if walls 201, 218 overlap one another sufficiently. Alternatively, and referring now to
To this end, handle 244 incorporates a pivotally mounted control lever 254. No conscious effort is required of the user to operate control lever 254, as the latter is located at the bottom of that portion of handle 244 which is ordinary grasped by the user when lifting first or second power associated module 212 or 202. Grasping handle 244 pivots control lever 254, which pulls on a cable 256. In turn, pulling on cable in the direction indicated as direction B turns a wheel 258. A connecting rod 260 responsively pulls on a latch pin 262 in a direction C, withdrawing latch pin 262 from a hole (not shown) in wall 210. First or second power associated modular unit 212 or 202 may then be pulled free from wall 210. Two cables 256 and associated components are depicted in
In the above latching arrangement, at least one of first power associated module 212 and second power associated module 202 comprises handle 244 for lifting. The latch is mostly contained within handle 244. That is, only control lever 254 and latch pins 262 protrude from handle 244, with the remaining linkage components being contained within handle 244.
Referring particularly to
Referring now initially to
Elongated flexible core 306 may comprise stranded metallic filaments.
Bearings 308 refer to a bearing assembly including ball or rollers, hereinafter referred to as rolling bearing elements, either balls or rollers, and associated races (e.g., races 330, 332 in
Referring to
Referring particularly to
The utilitarian power device is only part of a complete, self-contained appliance capable of performing a task; alternatively stated, the utilitarian device may be an incomplete appliance. It is utilitarian in that it provides at least one necessary function required to make the appliance operable. Illustratively, the utilitarian device may comprise power plant 302 or a portion thereof, or alternatively, may comprise power driven appliance 304 or a portion thereof, or in a still further alternative, any combination of these.
As illustrated in the examples of
Where the utilitarian power device (either a power producing power plant 302 or a power consuming power driven appliance 304) is an incomplete appliance including flexible drive shaft 300, the latter may be provided with a suitable terminal or interface apparatus (e.g., power connection head 320,
An example of the element assuring that the internal cable of driveshaft 300 can engage and rotate or be rotated by the added element is a solid, monolithic, rigid square drive crimped over or otherwise suitably coupled to elongated flexible core 306 of drive shaft 300. As an alternative, the element assuring that the internal cable of driveshaft 300 can engage and rotate or be rotated by the added element may be a female member, such as a square hole socket, star hole socket (e.g., Torx®), and the like.
Regardless of its specific form, the terminal or interface device will be selected to be readily installed by hand and/or by use of hand tools to a corresponding portion of the added element rendering the appliance complete.
In another implementation of the disclosure the power associated apparatus comprises a power driven appliance 304, or a power transmission device such as power connection head 320 for transmitting torque to power driven appliance 304 (
In an implementation of the disclosure shown in
As seen in
Flexible drive shaft 300 has a power connection head 320 from which projects a power transmitting element such as gear 322. Power driven appliance 304 connects to power from power connection head 320, and latches thereto. Power connection head 320 may also carry power plant controls, such as a lever 324 for controlling power plant 302. Lever 324 may for example draw a cable 382 coupled to flexible drive shaft 300, for controlling the throttle of an internal combustion engine (not shown). Therefore, as illustrated in the example of
Still referring to the example of
Turning to an example shown in
Rolling bearing elements (as opposed for example to shell type bearings, not shown) of flexible drive shaft 300 may take a number of forms. Illustratively, and as shown in
Referring to
A method of transferring torque from a power plant outputting torque to a power driven appliance comprises inputting the torque output by power plant 302 to elongated flexible core 306 of flexible drive shaft 300, encasing elongated flexible core 306 within flexible tubular sheath 310, reinforcing flexible tubular sheath 310 against collapse with internal stiffener 314 embedded within flexible annular wall 312 of flexible tubular sheath 310, and supporting elongated flexible core 306 on a plurality of bearings 308 including complementary bearing races and rolling bearing elements within the complementary bearing races such that elongated flexible core 306 is spaced apart from flexible tubular sheath 310, and each bearing 308 is spaced apart from every adjacent bearing 308. The method also comprises transferring torque from power plant 302 to power driven appliance 304 via flexible drive shaft 300. The advantage of using drive shaft 300 is that the construction recited herein allows for greater bending than is generally feasible with known flexible drive shafts, while still preventing collapse, kinking, and localized flattening of flexible drive shaft 300.
It will be appreciated that many features presented herein may be utilized with any of the implementations of the subject matter of this disclosure, even though this may not be explicitly described. For example, flexible drive shaft 300 may be incorporated into multi-application unit 100 and modular power plant and power driven application system 200.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiment, it is to be understood that the present disclosure is not to be limited to the disclosed arrangements, but is intended to cover various arrangements which are included within the spirit and scope of the broadest possible interpretation of the appended claims so as to encompass all modifications and equivalent arrangements which are possible.
It should be understood that the various examples of the apparatus(es) disclosed herein may include any of the components, features, and functionalities of any of the other examples of the apparatus(es) disclosed herein in any feasible combination, and all of such possibilities are intended to be within the spirit and scope of the present disclosure. Many modifications of examples set forth herein will come to mind to one skilled in the art to which the present disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
No element, act, or instruction used in the description of the present application should be construed as critical or essential to the embodiments unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items.
Therefore, it is to be understood that the present disclosure is not to be limited to the specific examples presented and that modifications and other examples are intended to be included within the scope of the appended claims. Moreover, although the foregoing description and the associated drawings describe examples of the present disclosure in the context of certain illustrative combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative implementations without departing from the scope of the appended claims.
All United States patents and applications, foreign patents, and publications discussed above are incorporated herein by reference in their entireties.
The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/184,722, filed Jun. 25, 2015, the entire contents of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1826075 | Jackson | Oct 1931 | A |
2743747 | Franks | May 1956 | A |
2778233 | Perry | Jan 1957 | A |
3040590 | Smithburn | Jun 1962 | A |
3941002 | Tucker, Jr. | Mar 1976 | A |
4597203 | Middleton | Jul 1986 | A |
4615117 | Flath | Oct 1986 | A |
4757786 | Ellegard | Jul 1988 | A |
5095259 | Bailey et al. | Mar 1992 | A |
5449140 | Lastowskit | Sep 1995 | A |
5526708 | Hill | Jun 1996 | A |
5901605 | Oosterhuis et al. | May 1999 | A |
5907970 | Havlovick et al. | Jun 1999 | A |
6266949 | Eavenson et al. | Jul 2001 | B1 |
6922981 | Tyree | Aug 2005 | B1 |
7007659 | Chittenden | Mar 2006 | B2 |
7382104 | Jacobson et al. | Jun 2008 | B2 |
7621194 | Tyree | Nov 2009 | B1 |
20110155888 | Jordahl | Jun 2011 | A1 |
20130305851 | Rees et al. | Nov 2013 | A1 |
Entry |
---|
US 4,939,323, 02/1991, Casper et al. (withdrawn) |
Number | Date | Country | |
---|---|---|---|
20160377218 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62184722 | Jun 2015 | US |