The disclosed subject matter generally relates to implants used for correction of orthopedic injuries or deformities, and more specifically, but not exclusively, concerns apparatuses and methods for fixing a portion of the spine to allow correction or healing thereof.
In the realm of neurologic, orthopedic and spinal surgery, it is well known to use implants to fix the position of bones. In this way, the healing of a broken bone can be promoted, and malformations or other injuries can be corrected. For example, in the field of spinal surgery, it is well known to place such implants into vertebrae for a number of reasons, including (a) to correct an abnormal curvature of the spine, including a scoliotic curvature, (b) to maintain appropriate spacing and provide support to broken or otherwise injured vertebrae, and (c) to perform other therapies on the spinal column.
Typical implant systems include several pieces, which may be associated or useful with only specific other pieces. Among such pieces are screws, hooks rods, plates and similar longitudinal members for supporting, holding and/or correcting one or more bones. Such longitudinal members can be fastened to bones via direct or indirect connection to hooks, screws, bolts or other fasteners, and can be linked to each other by a variety of connectors. In the spinal field, for example, screws or other fasteners can be attached to two or more vertebrae, the vertebrae can be adjusted into their normal or a therapeutically better position, and longitudinal members are connected to the fasteners so that the vertebrae are held in the normal or therapeutically improved position. Interbody devices, such as intervertebral cages or spacers to maintain the space and positioning of two adjacent vertebrae with respect to each other are also known.
Accordingly, known bone screws, hooks, clamps and other bone fasteners or fixation devices can be connected or adjoined to a particular bone or bones as a connection between the remainder of the implant and the bone(s). Specially formed plates or rods are commonly used as stabilization and support members. Thus, in a common spinal implant system, a spinal plate is implanted along one or more vertebrae by driving a bone screw through the plate and into each of two vertebrae. The vertebrae are thus supported and kept in a particular position by the plate, so as to promote correction or healing.
Where a rod is used as a support and stabilizing member, commonly a series of two or more screws are inserted into two or more vertebrae to be instrumented. A rod is then placed within or coupled to the heads of the screws, or is placed within a connecting device that links the rod and a screw head, and the connections are tightened. In this way, a rigid supporting structure is fixed to the vertebrae, with the rod providing the support that maintains and/or promotes correction of the vertebral malformation or injury.
Many varieties of bone fixation devices (e.g. screws and hooks) are monoaxial in construction. That is, such devices are connected to the rod or plate such that a longitudinal axis through the rod or plate and a longitudinal axis through the fixation device are capable of only a single position with respect to each other. While useful in certain circumstances, in some therapeutic situations such an inflexible device is impractical, or can lead to a longer duration of surgery.
More recently, bone fixation devices having multi-axial capability have been introduced. Examples of such constructs are shown in U.S. Pat. Nos. 5,797,911, 5,954,725, and 6,280,445. These devices allow one or more degrees of freedom between a fastening portion or fastening member and a receiving portion or member, reducing the required precision of placement of the fixation device, since a head portion of the fixation device is multi-axially positionable around the bone-threaded or hook portion. The head can thus be positioned so as to easily receive the rod, limiting or removing much of the positioning difficulty inherent in prior devices. However, such devices provide a single maximum angle between the fastening portion and the receiving portion for every relative orientation of those parts. Other devices have made possible a larger maximum angle between the fastening portion and the receiving portion when the fastening portion occupies one position with respect to the receiving portion, but allow only a smaller maximum angle when the fastening portion occupies any other position with respect to the fastening portion.
In one embodiment, the disclosure includes a bone fixation system including a receiver member having a longitudinal axis, a bone anchoring member having a head portion and a bone-engaging portion, the bone anchoring member having at least a first maximum angular position and a second maximum angular position relative to the axis, wherein the second maximum angular position includes a greater angle relative to the axis than the first maximum angular position, and a base member rotatably connected to the receiver member, the base member having at least one wall defining an opening that allows the bone anchoring member to occupy either of the first maximum angular position and the second maximum angular position. The system may also include an elongated member connected to the receiver member.
In another embodiment, an orthopedic implant apparatus is provided including a receiver member having at least one wall defining a channel for receiving at least a portion of an elongated body, the receiver member having a longitudinal axis, a bone anchoring member having a head portion and a bone-engaging portion, and a base member rotatably connected to the receiver member, the base member permitting multi-axial positioning of the bone attachment member with respect to the receiver member. The base member and the bone anchoring member have a first relative position wherein the maximum angle between the bone anchoring member and the axis is a first value. Other relative positions of the base member and the bone attachment member allow a maximum angle between the bone anchoring member and the axis that is less than the first value, and the first relative position is independent of the orientation of the channel of the receiver member.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein, being contemplated as would normally occur to one skilled in the art to which the invention relates.
Referring generally to
As will be described further below, the illustrated embodiments of system 15 can be implanted via an open, minimally-invasive or other surgical approach. Generally, fasteners are inserted into one or more bones, longitudinal members are contoured, if necessary, and surgically inserted and connected to the fasteners. The relative angles of fasteners with respect to the longitudinal member can be adjusted as necessary for ease of connection of the longitudinal member to the fasteners. Connectors are fitted to longitudinal members and/or fasteners as necessary or desired, and all elements are locked against movement with respect to other parts.
Referring now generally to
The illustrated embodiment of receiver member 30 of fastener 22 is an “open backed”variety. That is, channel 35 is open through the top of receiver member 30, making receiver member 30 generally U-shaped and defining two branches 18, 19. It will be understood that the principles of this disclosure apply to “closed backed” fasteners, i.e., those in which a longitudinal member receiving channel is not open through the top of its receiver member, but is essentially a hole through the receiver member. Examples of such “closed backed” fasteners are shown in U.S. Pat. No. 5,005,562, which is incorporated herein by reference.
A stop surface 45 may be included in receiver member 30 in communication with aperture 36. Stop surface 45 is provided to act as a stop for crown assembly 33 (described below). With stop surface 45, crown assembly 33 cannot move upward in aperture 36 beyond a certain position. Further, referring generally to
Bone anchoring member 31, in one embodiment, is a screw element having a head portion 47 and a shank portion 48. Shank portion 48 includes a bone engaging portion 50, which in one particular embodiment has threads, such as for engaging bone tissue, and may also include a non-threaded portion 52. At least part of head portion 47 is preferably, but not necessarily, spherical, rounded, conical, or otherwise configured for rotation or angulation with respect to receiver member 30 and base member 32. A top part of head portion 47 includes an opening 54 for accepting a tool, e.g. a hexagonal opening, for inserting bone anchoring member 31. It will be understood that an alternative bone anchoring member in the form of a hook element is also contemplated. Such a hook includes a head portion identical or similar to head portion 47 of bone anchoring member 31, and a shank portion similar to shank portion 48 of bone anchoring member 31. The shank portion of such a hook would include or extend into a curved portion for engaging or connecting to a bone.
Base or retaining member 32, 132, 232 in the embodiments shown in
Referring to
In the solid-circumference embodiment of base member 232 (
Base member 132 is essentially the same as base member 232, with the exception that a gap 162 is provided. Gap 162 can further allow base member 132 to be radially compressed, e.g. for insertion into groove 44 of receiver member 30, or to be radially expanded. In embodiments that are to be radially compressed or expanded, e.g. base member 32, 132, one or more notches or indentations 163 (
Base members 32, 132, 232 may also be configured with one or more undulating or wavy portions. An example of such an undulating ring is seen in
Crown assembly 33, in the embodiment shown in
Snap-ring 72 may also be configured with one or more undulating or wavy portions. Such undulating portions are preferably sufficiently thin to enable embodiments of snap-ring 72 that include them to elastically flatten. These embodiments can act as a type of spring between receiver member 30 (e.g. stop surface 45) and crown element 64, exerting a force on the crown element 64. Such force may hold crown element 64 against head portion 47 of bone anchoring member 31 or against a part of receiver member 30 (if bone anchoring member 31 is not yet within receiver member 31). Looseness or “slack” in the fastener 22 can thus be reduced or substantially eliminated, without preventing all movement of crown element 64. When fastener 22 is locked as described below, the forces on crown element 64 may flatten any undulating portions of snap-ring 72 partially or completely.
Compression member 34 is shown in one embodiment as an externally threaded element. Compression member 34 may be a standard set screw or a break-offset screw such as those disclosed in U.S. Pat. No. 6,478,795, the entirety of which is incorporated herein by reference. Compression member 34 may also include reverse angle threads as disclosed in U.S. Pat. No. 6,296,642, the entirety of which is incorporated herein by reference. In the threaded embodiment, compression member 34 is configured to thread into threaded portion 42 of receiver member 30 and against rod 16, to compress crown element 64 and lock fastener 22 with respect to rod 16. Alternatively or additionally, compression member 34 can include an external element such as a nut or cap, which may have threads or other features for holding the external element to receiver member 30. If an external element is used, receiver member 30 may be provided with compatible threads or other features for mating with the external element.
Alternative embodiments of a receiver member and a base member are depicted in
Receiver member 330 and base member 332 are rotatably connected, and such rotatable connection can be achieved in a number of ways. In one embodiment, receiver member 330 includes a groove 344 or thread (not shown). Groove 344 is shown as external of receiver member 330, but it will be understood that such a groove 344 or thread could also be placed inside receiver member 330. Base member 332 in this embodiment includes a circumferential flange 352 or threads (not shown) for rotatable connection to receiver member 330. Base member 332 attaches to receiver member 330 by placing flange 352 into groove 344, preferably in a snap- or press-fit. Where threads are provided on base member 332 and receiver member 330, those threads are engaged to rotatably connect base member 332 and receiver member 330. In the embodiment in which groove 344 is inside receiver member 330, flange 352 will extend outwardly from base member 332, or be otherwise configured to fit with groove 344.
The embodiment of base member 332 depicted in
Base member 432 can include an opening that permits a larger maximum angle in at least one orientation of the fastener with respect to base member 432 than in other orientations. As shown in
In another embodiment (
Alternatively, the rotatable connection of a receiver member and a base member could be achieved by different structure. For example, receiver member 630 and base member 632 could be rotatably connected via a C-shaped snap-ring 637 (
Any embodiment of receiver member (e.g. receiver member 630), base member (e.g. base member 632), and/or snap-ring (e.g. snap-ring 637) could be at least partially formed of a shape-memory alloy, such as the nickel-titanium alloy known as Nitinol®. In the embodiment shown in
In use, a device such as multi-axial fastener 22 may be implanted as follows. One or more surgical openings are made proximate to an area of the spine or other bones to be instrumented. The surgical openings may be open, minimally-invasive, or of other types that may be known in surgical practice. The vertebrae or other surgical site is prepared, for example by abrading tissue, drilling holes, adjusting bony or other tissue, or other steps to prepare and fixate a bone or bones.
Preferably, prior to insertion of fastener 22, receiver member 30, bone anchoring member 31, base member 32 or 232, and crown assembly 33 (if used) are assembled as described and shown above. In this pre-insertion state, receiver member 30 is multi-axially positionable with respect to bone anchoring member 31, and base member 32 or 232 is rotatable with respect to receiver member 30 so that the elongated or slot portion of opening 58 can point in any direction with respect to receiver member 30. Base member 32 or 232 can be intentionally pre-oriented with respect to receiver member 30 by the assembler prior to surgery, or can simply be placed in groove 44 of receiver member 30 in any orientation. The surgeon is able to change the relative orientation of receiver member 30 with respect to base member 32 or 232 and/or bone anchoring member 31 immediately prior to surgery by rotating bone anchoring member 31 with respect to receiver member 30 and/or base member 32, or by rotating receiver member 30 with respect to base member 32, or both. The surgeon is also able to change those relative orientations during surgery, as further described below. Crown assembly 33 (if present) is held within receiver member 30 between head 47 of fastening member 31 and stop surface 45. It will be appreciated that assembly of these parts can take place at any time prior to insertion, by the surgeon or other person, and that kits including one or more of each type of part described above, in one or more sizes can be provided for the user's convenience.
Once the surgical site is prepared, the assembled implant is inserted into the site and placed. In the embodiment in which bone anchoring member 31 is a screw, threaded shank portion 50 may be inserted into a prepared hole in a vertebra. Where bone anchoring member 31 includes a self-drilling screw or a self-tapping screw, a previously-drilled hole in the bone, or tapping of the hole with a separate tool, may not be necessary. An appropriate tool may be inserted through aperture 36 of receiver member 30 and opening 66 of crown member 64 into tool opening 54 of bone anchoring member 31, and then such tool may be used to turn bone anchoring member 31 to insert it in the bone.
When bone anchoring member 31 is inserted into the bone to the desired depth, the tool is removed, and the surgeon can make adjustments to the orientation of receiver member 30 with respect to bone anchoring member 31 or to the orientation of base member 32 with respect to receiver member 30. For example, the surgeon can turn or angle receiver member 30 with respect to bone anchoring member 31. The surgeon can also turn base member 32 in groove 44 with respect to receiver member 30, for instance by maneuvering receiver member 30 and base member 32 together until a part of bone anchoring member 31 is within an elongated opening in base member 32 such as gap 62, and then turning receiving member 30 with respect to bone anchoring member. Bone anchoring member 31 interferes with base member 32 at gap 62 so that base member 32 cannot turn with receiver member 30. By turning base member 32 with respect to receiver member 30, the orientation of the elongated part of center opening 58 of base member 32 (e.g. gap 62 or slot 158b) rotates or pivots, so that the direction in which bone anchoring member 31 can attain the largest maximum angulation with respect to receiver member 30 is pivotable and independent of the orientation of receiver member 30. Other implant devices, such as additional fasteners 22, multi-axial screws 23, 24, and/or monoaxial hooks 29, can similarly be inserted into the same or other bones.
A longitudinal member, such as spinal rod 16 or 17, can be bent or otherwise contoured and then inserted into the surgical site. The longitudinal member is connected to receiver member 30 by insertion of a portion of it into channel 35 of receiver member 30. The longitudinal member is inserted (or “reduced”) at least to a point so that compression member 34 can be connected to receiver member 30 and hold the longitudinal member within channel 35. Similar longitudinal member reduction can be done with respect to other screws, hooks, connectors, clamps or other devices. The surgeon can then manipulate the spine and the implanted devices so that the spine is corrected or placed in a therapeutically improved position.
When the spine and implants are positioned as the surgeon desires, the longitudinal member is locked within receiver member 30 by tightening compression member 34 against the longitudinal member, which presses against crown assembly 33 (if present), fastener member head portion 47, and base member 32. Receiver member 30, particularly channel 35 and its adjoining surfaces, as well as rod 16 or 17 and/or bone anchoring member 31 can be configured so that crown element 64 or crown assembly 33 is not necessary. Other implant devices are similarly tightened to hold the longitudinal member, and the spine, in the desired position.
As a part of the process of adjusting the position of the spinal column, one or more spacing devices can be inserted between adjacent vertebrae. Examples of such intervertebral implant devices are disclosed in U.S. Pat. Nos. 5,984,967 and 6,113,637, both of which are incorporated herein by reference. “Cage”-type intervertebral implants may also be packed or otherwise provided with one or more substances for inducing or promoting bone growth, such as a bone morphogenic protein, as disclosed in U.S. Pat. No. 5,984,967. Referring to
As seen in
The structures described above are preferably made of biocompatible materials such as stainless steel, titanium, nickel-titanium (e.g. Nitinol®) or other shape-memory alloys, certain hard plastics or other synthetic materials, and the like.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. It should be understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/496,536, filed Aug. 20, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4085744 | Lewis et al. | Apr 1978 | A |
4404967 | Bacal et al. | Sep 1983 | A |
4611582 | Duff | Sep 1986 | A |
4763644 | Webb | Aug 1988 | A |
4805602 | Puno et al. | Feb 1989 | A |
4841959 | Ransford | Jun 1989 | A |
4867144 | Karas et al. | Sep 1989 | A |
4887595 | Heinig et al. | Dec 1989 | A |
4946458 | Harms et al. | Aug 1990 | A |
5005562 | Cotrel | Apr 1991 | A |
5024213 | Asher et al. | Jun 1991 | A |
5084049 | Asher et al. | Jan 1992 | A |
5085660 | Lin | Feb 1992 | A |
5092893 | Smith | Mar 1992 | A |
5108395 | Laurain | Apr 1992 | A |
5133716 | Plaza | Jul 1992 | A |
5147360 | Dubousset | Sep 1992 | A |
5154718 | Cozad et al. | Oct 1992 | A |
5176678 | Tsou | Jan 1993 | A |
5207678 | Harms et al. | May 1993 | A |
5217461 | Asher et al. | Jun 1993 | A |
5261907 | Vignaud et al. | Nov 1993 | A |
5261909 | Sutterlin et al. | Nov 1993 | A |
5312405 | Korotko et al. | May 1994 | A |
5330477 | Crook | Jul 1994 | A |
5360431 | Puno et al. | Nov 1994 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5437671 | Lozier et al. | Aug 1995 | A |
5439463 | Lin | Aug 1995 | A |
5443465 | Pennig | Aug 1995 | A |
5443467 | Biedermann et al. | Aug 1995 | A |
5466237 | Byrd, III et al. | Nov 1995 | A |
5470333 | Ray | Nov 1995 | A |
5474555 | Puno et al. | Dec 1995 | A |
5476464 | Metz-Stavenhagen et al. | Dec 1995 | A |
5498262 | Bryan | Mar 1996 | A |
5498263 | DiNello et al. | Mar 1996 | A |
5501684 | Schlapfer et al. | Mar 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5527314 | Brumfield et al. | Jun 1996 | A |
5531746 | Errico et al. | Jul 1996 | A |
5545164 | Howland | Aug 1996 | A |
5549607 | Olson et al. | Aug 1996 | A |
5549608 | Errico et al. | Aug 1996 | A |
5554157 | Errico et al. | Sep 1996 | A |
5562661 | Yoshimi et al. | Oct 1996 | A |
5575792 | Errico et al. | Nov 1996 | A |
5578033 | Errico et al. | Nov 1996 | A |
5578034 | Estes | Nov 1996 | A |
5584834 | Errico et al. | Dec 1996 | A |
5586984 | Errico et al. | Dec 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5591166 | Bernhardt et al. | Jan 1997 | A |
5601552 | Cotrel | Feb 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5607426 | Ralph et al. | Mar 1997 | A |
5609593 | Errico et al. | Mar 1997 | A |
5609594 | Errico et al. | Mar 1997 | A |
5643265 | Errico et al. | Jul 1997 | A |
5647873 | Errico et al. | Jul 1997 | A |
5651789 | Cotrel | Jul 1997 | A |
5667507 | Corin et al. | Sep 1997 | A |
5669910 | Korhonen et al. | Sep 1997 | A |
5669911 | Errico et al. | Sep 1997 | A |
5672176 | Biedermann et al. | Sep 1997 | A |
5688272 | Montague et al. | Nov 1997 | A |
5688273 | Errico et al. | Nov 1997 | A |
5690630 | Errico et al. | Nov 1997 | A |
5702393 | Pfaifer | Dec 1997 | A |
5707372 | Errico et al. | Jan 1998 | A |
5709684 | Errico et al. | Jan 1998 | A |
5716355 | Jackson et al. | Feb 1998 | A |
5725588 | Errico et al. | Mar 1998 | A |
5733286 | Errico et al. | Mar 1998 | A |
5752955 | Errico | May 1998 | A |
5810818 | Errico et al. | Sep 1998 | A |
5817094 | Errico et al. | Oct 1998 | A |
5876402 | Errico et al. | Mar 1999 | A |
5879351 | Viart | Mar 1999 | A |
5882350 | Ralph et al. | Mar 1999 | A |
5885284 | Errico et al. | Mar 1999 | A |
5885286 | Sherman et al. | Mar 1999 | A |
5947966 | Drewry et al. | Sep 1999 | A |
5980523 | Jackson | Nov 1999 | A |
6015409 | Jackson | Jan 2000 | A |
6077263 | Ameil et al. | Jun 2000 | A |
6080156 | Asher et al. | Jun 2000 | A |
6113600 | Drummond et al. | Sep 2000 | A |
6136003 | Van Hoeck et al. | Oct 2000 | A |
6217578 | Crozet et al. | Apr 2001 | B1 |
6280442 | Barker et al. | Aug 2001 | B1 |
6540748 | Lombardo | Apr 2003 | B2 |
6565567 | Haider | May 2003 | B1 |
6660004 | Barker et al. | Dec 2003 | B2 |
7066937 | Shluzas | Jun 2006 | B2 |
7163539 | Abdelgany et al. | Jan 2007 | B2 |
20010047171 | Troxell et al. | Nov 2001 | A1 |
20020026193 | Barker et al. | Feb 2002 | A1 |
20020058942 | Biedermann et al. | May 2002 | A1 |
20030032957 | McKinley et al. | Feb 2003 | A1 |
20030055426 | Carbone et al. | Mar 2003 | A1 |
20040116928 | Young et al. | Jun 2004 | A1 |
20060142761 | Landry et al. | Jun 2006 | A1 |
20060241603 | Jackson | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
195 09 332 | Aug 1996 | DE |
197 20 782 | Nov 1998 | DE |
2 794 637 | Dec 2000 | FR |
2 173 104 | Oct 1996 | GB |
WO 9639090 | Dec 1996 | WO |
WO 0076413 | Dec 2000 | WO |
WO 0230307 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050080420 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60496536 | Aug 2003 | US |