The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
Moving now to the figures,
The illustrated embodiment of the xy-gantry 10 is configured for vertical (y-axis) and horizontal (x-axis) positioning of the work piece carriage 14. To facilitate the movement along the multiple axes, the xy-gantry 10 generally includes a plurality of cooperating tracks, including a top track 20, a bottom track 22, and a vertical track 24 as well as horizontal and vertical drive systems. The top and bottom tracks 20, 22 are vertically spaced apart in generally parallel relation to one another and function to guide positioning of the work piece carriage 14 parallel to the horizontal axis. The vertical track 24 extends vertically in substantially perpendicular relation between the top and bottom tracks 20, 22 and functions to guide positioning of the work piece carriage 14 parallel to the vertical axis. More specifically, the work piece carriage 14 is movingly mounted to the vertical track 24 and moves relative thereto for vertical positioning. To horizontally move and position the work piece carriage 14, the entire vertical track 24, including the work piece carriage 14 mounted thereto, moves horizontally (left-to-right or right-to-left with reference to
Although the present invention will be described with reference to an embodiment of an xy-gantry providing movement along horizontal and vertical axes, the present invention is not so limited to only vertical and horizontal movement. One of ordinary skill in the art will recognize that the xy-gantry according to the teachings of the present invention can be configured to provide movement along multiple axes such as in both vertical and horizontal planes.
In an embodiment, the top and bottom tracks 20, 22 are configured to be mounted to a vertical support structure such as a wall (not shown). One particular application would be mounting the top and bottom tracks 20, 22 to the walls of a vending machine (not shown) such that the xy-gantry 10 can be used to facilitate distribution of merchandise from within the vending machine. The top and bottom tracks 20, 22 may be mounted by any practical mounting means, including, but not limited to, rivets, nails, screws, bolts and the like. Alternatively, the top and bottom tracks 20, 22 could be welded or bonded to the vertical support structure, thereby, providing mounting means.
In a preferred embodiment, the top and bottom tracks 20, 22 are formed from sheet metal while the vertical track 24 is formed from extruded metal. As such, the top, bottom and vertical tracks 20-24 can be easily custom cut to any desired length. Furthermore, with the top and bottom tracks 20, 22 formed from sheet metal, the tracks 20, 22 are inexpensive to manufacture. While the above provides advantages, in alternative embodiments, the tracks 20-24 may be made from other materials or manufacturing processes.
With further reference to
More particularly, and with reference to
When the horizontal drive motor 40 drives the drive belt system 42 in one direction both the top carriage 56 and the bottom roller guide 58 are both actuated parallel to the horizontal axis in a first direction. When the horizontal drive motor 40 drives the drive belt system 42 in the opposite direction, both the top carriage 56 and the bottom roller guide 58 are actuated parallel to the horizontal axis in a second direction, opposite the first direction.
The horizontal drive motor 40 can be any suitable motor but is preferably a direct current stepper motor that includes an integral encoder. Furthermore, the motor preferably operates at between 20V and 35V DC with a running torque of 5 in-lbs with an output speed of between about 450 and 550 RPM at 0 in-lbs of torque and between about 350 and 450 RPM at 5 in-lbs of torque. Alternatively, the encoder could be an independent component separate from the horizontal drive motor 40. The horizontal drive motor 40 and the integral encoder operably communicate with a controller (not shown) for accurate control and positioning of the vertical track 24.
The horizontal drive belt system 42 is provided by a pair of timing belt segments 62, 64 that include pairs of distal ends 66, 67 and 68, 69, respectively. With general reference to
Although the illustrated embodiment uses timing belt segments 62, 64, with further reference to
The xy-gantry 10 includes a drive belt guide system that guides the movement of the drive belt system 42 during actuation of the vertical track 24. For explanative purposes, the timing belt system 42 will be explained as defining a front portion and a back portion. The drive sprocket 76 (
The drive belt guide system includes the drive sprocket 76 attached to the horizontal drive motor 40 and a plurality of pulleys 84-88. All pulleys can include teeth as explained previously. With reference to
Referring to
As illustrated in
The top track 20 includes a mounting track portion 104 having an elongated cavity 106 that substantially receives the roller assembly 92 to guide the horizontal movement of the top carriage 56. The bottom of the mounting track portion 104 includes a channel 108 that extends the length of the mounting track portion 104 that provides access to the cavity 106. The channel 108 is interposed between two roller support flanges 110, 112 that further provide the bottom of the mounting track portion 104. The roller support flanges 110, 112 extend inward toward each other from sidewalls of the mounting track portion 104. In an embodiment, the roller support flanges 110, 112 are canted relative to the sidewalls.
The roller assembly 92 inserts into the cavity 106 of the mounting track portion 104 with the rollers 94 positioned within the cavity 106 and rollably vertically supported by the roller support flanges 110, 112. The base member 96 extends outward from the cavity 106 through the channel 108 in the bottom of the mounting track portion 104 such that it is interposed between the two roller support flanges 110, 112. The channel 106 provides a free path for the base member 96 to travel the length of the mounting track portion 104 while being connected to both the top carriage 56 that is exterior of the mounting track portion 104 and the rollers 94 positioned within the cavity 106. Although the channel 108 is illustrated in the bottom of the mounting track portion 104 of the illustrated embodiment, the channel 106 can be formed in the top or the sides of the mounting track portion 104 depending on the embodiment of the xy-gantry such as whether the xy-gantry substantially provides movement in a vertical plane or a horizontal plane.
The top carriage 56 further includes a pair of timing belt mounts 116, 118 to which the distal ends 67, 69 of the drive belt system are clamped by the belt clamps 72. In the illustrated embodiment, the top carriage 56 is attached to the back portion (as viewed in
Referring to
The bottom roller guide 58 includes three guide rollers 128. However, any number of rollers may be used. As best illustrated in
In an embodiment, the bottom track 22 does not provide substantial vertical support for the vertical track 24, other than minor frictional forces between the rollers 128 and the guide rail portion 130, in the illustrated embodiment. The top track 20, namely the mounting track portion 104, vertically supports the vertical track 24. Furthermore, because the guide rail portion 130 merely slides between the rollers 128, the bottom track 22 is not rigidly connected to the top track 20 via the vertical track 24. Specifically, if the bottom track 22 were not mounted to a vertical support, the bottom track 22 would merely fall vertically and the guide rail portion 130 would slide right out of engagement with the rollers 128.
However, in an embodiment, the bottom roller guide 58 is vertically supported by the bottom track 22. In such a configuration, the bottom roller guide would include at least one roller positioned to support the vertical loading. Alternatively, if the xy-gantry 10 were positioned for movement in a horizontal plane the rollers 128 would provide vertical support for that end of the vertical track 24.
As illustrated in the exploded view of
The timing belt length 144 may include teeth and the drive sprocket 142 may include corresponding teeth for engaging the teeth of the timing belt length 144. The vertical drive motor 140 can be any suitable motor but is preferably a direct current stepper motor that includes an integral encoder and is preferably similar to the horizontal drive motor 40. Alternatively, the encoder could be independent from the drive motor 140. The vertical drive motor 140 and corresponding encoder operably communicate with a controller 146 for accurate control and positioning of the work piece carriage 14.
The controller 146 may be an integrated circuit including any one of or any combination of a processor a central processing unit, an input/output interface, timers, RAM for data storage and other electrical components to control actuation of the stepper motor. The controller 146 mounts to the main frame 98 of the top carriage 56 and includes a plurality of standoffs 147 that insert into a plurality of corresponding holes in the main frame 98 to secure the controller 146 to the main frame 98. The combination of the stepper motor, the timing belt, the encoder and the circuit board allows for precise and accurate vertical positioning of the working piece carriage 14.
With reference to FIGS. 2 and 5-7 the vertical timing belt 144 forms a second drive loop and wraps around the drive sprocket 142 connected to the vertical drive motor 140 as well as an idler pulley 149 positioned proximate the bottom end 52 of the vertical track 24. In an embodiment, the timing belt 144 is not an endless loop, but is a length of timing belt having distal ends 150 similar to the segments 62, 64 of the previously discussed horizontal timing belt system 42. In this configuration, the distal ends 150 are attached to the working piece carriage 14 by belt clamps 72 (see
An idler shaft 158 mounts to a mounting bracket 160 and secures the idler pulley 149 to the bottom end of the vertical track 24 (see
Parallel to the belt guide channel 164 is a cable carrier channel 166 that houses a cable carrier 168. The cable carrier channel 166 has a substantially C-shaped cross-section. The cable carrier 168 protects any cables (not shown) for controlling any attachments mounted to the work piece carriage 14. A first free end 170 of the cable carrier 168 is fixed to a cable carrier guide 171 mounted within the cable carrier channel 166. The second free end 172 of the cable carrier 166 is fixed to the cable carrier mount 173 of the work piece carriage 14. Further, the cable carrier 168 tracks the movement of the work piece carriage 14 and protects any cables from becoming damaged, snagged, or pinched as is generally known in the art.
The work piece carriage 14 mounts to a center guide track 188 of the vertical track 24 for vertical movement relative thereto. The center guide track 188 substantially separates the belt guide channel 164 from the cable carrier channel 166. The center guide track 188 has a T-shaped cross-section that provides two roller tracks 189, 190 that are formed by a pair of cantilever flanges that extend away from one another.
The work piece carriage 14 includes a plurality of concave rollers 191 that are laterally spaced apart and mount the work piece carriage 14 to the roller tracks 189, 190. The concave rollers 191 engage and ride on the roller tracks 189, 190. The concave profile of the rollers 191 allows the work piece carriage 14 to only move in the vertical direction and prevents the rollers 191 and, consequently, the work piece carriage 14 from disengaging the vertical track 24. Alternatively, the rollers 191 could be replaced by low friction slides, such as slides formed from or coated with polytetrafluoroethylene, commercially known as Teflon.
Another cable carrier 176 mounts to the top track 20. The cable carrier 176 has a first free end 177 fixed to a cable carrier support flange 179 of the top track 20. The cable carrier support flange 179 is a portion of the top track 20 that extends vertically upward. The second free end 180 of the cable carrier 176 is fixed to a cable carrier mounting flange 181 of the main frame member 98 of the top carriage 56. As such, the cable carrier 176 tracks the horizontal movement of the top carriage 56. This cable carrier 176 protects the wires (not shown) that are connected to the vertical drive motor 140 and its corresponding controller 146.
As can be best understood with reference to
The xy-gantry 10 may include a plurality of limit switches (not shown) to control the maximum travel of the vertical track 24 and work piece carriage 14. When the vertical track 24 is actuated to either end of the top and bottom tracks 20, 22, horizontal limit switches, such as limit switch 196 of
The limit switches can also be used on activation of the xy-gantry 10 to determine an initial position of the vertical track 24 and the work piece carriage 14. For example, when the xy-gantry 10 is first activated or energized, the vertical track 24 and work piece carriage 14 can be actuated until they each activate a corresponding limit switch. At the point of actuation, the controller 146 and encoder can establish a point of reference from which the controller 146 and encoder combination can accurately position the respective components.
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.