1. Field of the Invention
This invention relates in general to the field of microscopy and, in particular, to a novel approach for providing epi-illumination to an array microscope.
2. Description of the Prior Art
As described in various embodiments in co-owned International Application PCT/US02/08286 and U.S. Patent Application Ser. No. No. 10/158,626, herein incorporated by reference, array microscopes comprise a plurality of optical imaging elements configured to image respective sections of an object and disposed with respect to an object plane so as to produce at respective image planes respective images of the respective sections of the object measurements. The object may be illuminated in a variety of ways. Depending on the direction of object illumination, the term trans-illumination is used in the art to refer to systems where the light collected by the observation system passes through the sample, while the term epi-illumination is used when the object is illuminated from the same side of the observation system. Epi-illumination is used for opaque samples or when it is disadvantageous to receive the illumination beam directly, such as in fluorescence imaging, known as epi-fluorescence. This invention concerns epi-illumination and related microscopic techniques applied to array microscopes.
Adequate illumination of the object plays an important role in microscopy. Several important imaging parameters, such as optical resolution and contrast, depend on the optical system's numerical aperture, the illumination's temporal and spatial coherence, polarization, distribution of irradiance, and intensity. Except for special cases, optical systems are designed to provide a uniform irradiance of the object and to completely fill the numerical aperture of the observation channel.
Typically epi-illumination systems are implemented by inserting a beam splitter in the imaging train, such that the illumination and the imaging systems share part of the optical train.
Another type of illumination that is sometimes used in epi-illumination microscopy is the so-called critical illumination configuration, where the light source is imaged at the object plane. This provides a shorter illumination system, but requires that the light source provide uniform radiance. Like in the case of Koehler illumination, the light source is ordinarily disposed actually or virtually on the optical axis of the imaging lens.
The use of beam splitters to achieve epi-illumination works well with conventional microscopy systems, but it is much more difficult to implement in an array microscope where all components are arranged very tightly in a very small space, as illustrated in
The use of array microscopes is based on the realization that small optical systems can provide good-quality, high-resolution imaging with magnification. Accordingly, each individual optical system in the array is designed to perform such a function and a plurality of systems is packed together as closely as possible within the constraints of the physical size of each component. A typical individual microscope system used in an array microscope is shown in
Co-owned U.S. Ser. No. 10/158,626 discloses a number of solutions for successfully implementing epi-illumination in array microscopes. However, those solutions require the use of advanced manufacturing technologies that are still difficult to implement economically and reliably. Therefore, there is still a need for a more practical approach to epi-illumination of array microscopes. This invention provides a variety of solutions that combine the imaging advantages of array microscopy with the simplicity of single optical-axis epi-illumination.
In essence, the invention consists of introducing a single-axis optical system in the imaging channel of the array microscope in order to relay the image of the sample object onto a detector placed at a greater distance from the object plane than in conventional array microscopy. Because of the relatively large size of single-axis optical systems in relation to the size of array microscopes, sufficient space is available in the single-axis train to provide simultaneous illumination to all multi-axis objectives in the array using a single lateral light source and a beam splitter in the imaging train reflecting the light toward the sample object. Thus, according to the main aspect of the invention, epi-illumination is provided simply and efficiently to the array microscope.
According to another aspect, the invention provides conjugate aperture-stop positions that may be used to place optical elements in the system to affect the properties of the illumination and/or the imaging wavefronts. For example, sets of complementary plates could be inserted in the system to carry out phase-contrast techniques and/or Hoffman modulation-contrast techniques; cubic phase plates to increase the depth of focus; differential-interference-contrast elements, or polarizing elements as needed for practicing DIC or Nomarsky techniques; targeted obscurations of the pupil to manipulate the spatial coherence of the illumination and/or imaging optics; and phase plates to manipulate aberration and focusing properties of individual optical systems.
According to another aspect of the invention, the relay system is used also to correct residual aberrations introduced by the microscope array objectives. Since the relay optics may be made of conventional optical glass, which offers a larger range of optical properties (such as index of refraction and dispersion number) than the materials used to form the optical elements of array microscopes, the relay optics may be modified by conventional design to correct array imperfections such as chromatic aberrations. Similarly, if imaging at different wavelengths requires compensation due to the relative movement of the detector, the relay system can be used to provide such additional compensation simply as a matter of design of the array microscope.
According to yet another aspect of the invention, the epi-illumination array microscope is combined with an additional light source positioned on the opposite side of the sample to also provide trans-illumination. Therefore, the microscope can be used alternatively or simultaneously with epi- and trans-illumination modalities, for example in epi-fluorescence and dark-field trans-illumination modes, as well as in epi-illumination.
Various other advantages will become clear from the description of the invention in the specification that follows and from the novel features particularly pointed out in the appended claims. Therefore, to the accomplishment of the objectives described above, this invention consists of the features hereinafter illustrated in the drawings, fully described in the detailed description of the preferred embodiments, and particularly pointed out in the claims. However, such drawings and descriptions disclose only some of the various ways in which the invention may be practiced.
The main inventive concept of this disclosure resides in the idea of interposing a single-axis relay system in the imaging train of a multiple-axis imaging system. Through the relay system, it is possible to provide epi-illumination as well as various forms of operating modalities heretofore not possible with multiple-axis imaging systems such as array microscopes.
As used in this disclosure, the terms “stop” and “aperture stop” refer to the aperture stop associated with the array microscope. The term is used both with respect to the aperture stop of each microscope in the array, as determined by the optics constituting each optical system, and with respect to the aperture stop of the entire array (which is a composite of all individual systems). With reference to the scanning direction of the imaging system of the invention, as claimed, the term “linear” is intended to cover a straight as well as a curvilinear path during which each objective of the microscope array acquires image data (light intensity) corresponding to a respective straight or curvilinear continuous strip of the object. Finally, relay system” is intended to refer to any optical system that relays an image of an object, whether real or virtual, from a first plane onto a second plane, which may be coextensive with the first plane, including planes located at infinity.
Referring to the figures, wherein like parts are referred throughout with like reference numerals and symbols,
The array microscope 60 images the object 40 onto the image plane 64 (shown in phantom line), which in conventional array microscopy is associated with the detector position (see
The beam splitter 72 can consist of a beam splitting cube, plate or any other element that directs at least a portion of the light energy received from the source 74 towards the object 40 and transmits at least a portion of the energy reflected from the object towards the detector 42. It is similarly possible to use polarizing elements, such as a polarizing beam splitter (PBS), to increase the efficiency of light coupling. In conventional (unpolarized) systems, the maximum attainable efficiency is 25% (calculated as a percentage of the light-source energy that reaches the detector). Using polarized light with a PBS, it is possible to increase the efficiency virtually to 100%, providing that the light source emits linearly polarized light (when the light source emits unpolarized light, the maximum efficiency is 50%). For example, as illustrated in
Other configurations are possible, such as by using dichroic filters for epi-fluorescent imaging of tissue treated with fluorophores that attach to specific molecules or compounds. Under short-wavelength illumination (excitation), different wavelengths of light are emitted and imaged by the array. Dichroic filters can thus be used to direct the excitation light from the light source towards the object and then to let the fluorescent light through towards the detector.
According to another aspect of the invention, the beam splitter may be located at a position other than the aperture-stop plane 70, as illustrated in
Thus, an additional advantage of combining a multi-axis imaging system with a single-axis relay according to the invention is the easy access provided to planes conjugate with the aperture stop of the imaging system of the array microscope. This feature enables the simultaneous modification of the properties of the imaging beams from all microscopes in the array as may be required, for example, to practice phase-contrast microscopy, differential interference contrast microscopy, Nomarsky techniques, extended depth-of-field microscopy, and other procedures used in the art.
Additional examples of such adaptations are shown in
Other examples of applications are the increase of the depth of focus by inserting a cubic phase plate (such as available from CDM Optics of Boulder, Colo., and described in U.S. Pat. No. 6,069,738); providing polarization, or differential interference contrast (DIC), as needed for Nomarsky techniques and other related techniques; and manipulating the spatial coherence of the illumination/imaging optics by introducing targeted obscurations of the pupil (i.e., in general, apodizations of the pupil). In most cases the modifying element must be matched by an appropriate element introduced in the illumination system. This can be done, for instance, using the techniques described in Ser. No. 10/191,874 or by inserting the beam splitter in a location closer to the object, hence separating the pupil location in the illumination and imaging paths. Various other potential applications and related techniques are described in M. Pluta, “Advanced Light Microscopy,” Vol. 2, Elsevier, Amsterdam, 1988.
The relay system as described can serve the additional purpose of correcting residual aberrations introduced by the microscope array objectives. The correction of aberrations is harder to achieve with materials that can be molded or otherwise manufactured into array form than with conventional optical glass, especially in the case of chromatic aberrations. Therefore, additional compensation (normally obtained by moving the detector) is often needed in array microscopy in order to image at different wavelengths. The relay system of the invention can also serve to provide such additional compensation as a matter of design of the array microscope, thereby eliminating or at least reducing the need to rely on detector motion. Being conventional in all respects, the relay system offers the advantages of conventional manufacturing technology and the ability to use a wide range of materials, such as glasses, plastics, etc., which are suitable for chromatic correction. An example of this type of design and the resulting improvements is illustrated in
Wavelengths: 3
Units: Microns
Surface Data Summary:
In another embodiment of the invention illustrated in
As discussed above, though not essential to practice the invention, the imaging systems of the array microscope are preferably telecentric, in which case all the individual stop images of the array are coextensive. Similarly, the invention does not require that the array microscope form real images of the object that are then relayed onto the detector plane. Equivalent imaging systems can be readily designed such that the image formed by the array is virtual and a real image is projected only onto the detector. In this case it would be possible to design systems with overall negative magnification (i.e., the marginal ray does not cross the optical axis). However, the concept is more easily illustrated with relay lens and real imaging.
It is also noted that the invention has been illustrated using a multiple-axis imaging system followed by a single-axis relay in the imaging train, but it could as well consist of a number of differently interspersed multiple-axis and single-axis systems. For example, a single-axis relay system could be placed between two multiple-axis systems in sequence, as illustrated in
Thus, it has been shown that the single-axis/multiple-axis system combination of the invention provides numerous advantages heretofore not available in the art. It provides space needed for implementation of epi-illumination in array microscopy. It provides access to planes conjugate with the stop plane of the array microscope, thereby permitting the implementation of various microscope modalities such as phase contrast, multi-pole illumination, differential interference contrast (DIC) microscopy, Nomarsky techniques, etc., and of other modifications aimed at improving imaging quality, such as the use of a cubic phase plate to simultaneously achieve extended depth of field for all objectives in the array microscope. The invention also allows multiple modalities of microscopy to be used simultaneously, such as epi-fluorescence and trans-illumination imaging. Finally, it also enables the correction of aberrations introduced by the array microscope.
Therefore, while the invention has been shown and described herein in what is believed to be the most practical and preferred embodiments, it is recognized that departures can be made therefrom within the scope of the invention, which is not to be limited to the disclosed details but is to be accorded the full scope of the claims including any and all equivalents thereof.
This application is a continuation-in-part application of U.S. Ser. No. 10/690,878, filed Oct. 22, 2003, and a continuation-in-part application of U.S. Ser. No. 10/637,486, filed Aug. 11, 2003, which is based on PCT/US02/08286, filed Mar. 19, 2002, and claims the benefit of priority of U.S. Provisional Application No. 60/276,498, filed Mar. 19, 2001, under 35 U.S.C. Sect. 119.
Number | Date | Country | |
---|---|---|---|
60276498 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US02/08286 | Mar 2002 | US |
Child | 10637486 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10690878 | Oct 2003 | US |
Child | 11511720 | Aug 2006 | US |
Parent | 10637486 | Aug 2003 | US |
Child | 11511720 | Aug 2006 | US |