1. Field of the Invention
The present invention relates to wind turbines utilized to convert wind energy into electro-mechanical energy and, more specifically, to vertical axis wind turbines for directly producing electrical energy.
2. Background Information
Wind as a source of energy is a development that has existed from distant historical accounts. There is evidence which indicates windmills were in use in Babylon and in China as early as 2000 B.C.
Wind is presently used as a source of energy for driving horizontal axis and vertical axis windmills. Horizontal axis windmills have been used extensively to drive electrical generators, however they suffer from several disadvantages, including the need for an even horizontal air inflow, danger to birds and air traffic, obscuring the landscape with banks of rotating windmills, and in the case of large diameter horizontal axis propellers, supersonic speeds at the tips of the rotors.
Compared to vertical axis wind turbines (VAWT) where its exposure remains constant regardless of the wind direction, a horizontal axis wind turbine (HAWT) must turn to face the wind direction. This disadvantageously adds additional moving parts to the wind gathering and electrical energy producing parts.
An example of a VAWT is shown in U.S. Pat. No. 5,391,926 issued to Staley et al. that uses double curved stator blades to direct wind current to the rotor assembly and to increase structure stability of the thin stator blades. U.S. Pat. No. 6,015,258 issued to Taylor discloses another wind turbine that includes a ring of stator blades of an airfoil shape to reduce impedance of air directed towards the central rotor assembly. Further, U.S. Patent Publication No. 2002/0047276 AI by Elder discloses an outer ring of planar stator blades to direct flow of wind into a central rotor assembly.
Furthermore, Canadian Patent No. 1,126,656 to Sharak discloses a vertical axis turbine with stator blades that redirect airflow to the rotor blades by extending vertical air guide panels that intermittently surround the rotor unit and direct air currents to the rotor unit for rotation by the wind. The air guide panels are closed at the top and bottom by horizontally extending guide panels that are canted in complementary directions. The upper panel is tilted downwardly as it progresses inwardly and the lower panel is tilted upwardly on its inward extent to thereby increase the velocity and pressure of the wind as it is directed to the rotor unit.
Another Canadian Patent Application No. 2,349,443 to Tetrault discloses a new concept of VAWT comprising an air intake module that redirects the airflow vertically into a series of rings with parabolic evacuations. A major drawback of this design is the fact that the air intake module needs to face the wind, so it requires a yaw mechanism to orient it into the wind. Moreover, the whole design forces the airflow to change its direction from horizontal to vertical into a sort of internal enclosure from where the air is evacuated by changing again its direction from vertical to horizontal. The numerous and drastic changes in airflow directions entail a power loss in the airflow and a reduction of the turbine efficiency, as the energy of the wind is transformed into rotation of the turbine only at the last airflow direction change.
A disadvantage of the entire propeller based horizontal and vertical axis windmills or wind turbines of the prior art relates to their inability to gather and translate large amounts of wind into energy via a VAWT. Ideally, the airflow exiting a blade will be used to a higher degree. Unfortunately, in most cases the prior art enables the capture of only a fraction, the first impulse, of the wind power.
It is noted that a prior art that uses properties of a fluid to transform efficiently a linear fluid movement into a rotational mechanical movement is the turbine described in U.S. Pat. No. 1,061,142 issued to Nikola Tesla in 1913 (the Tesla Turbine). The Tesla turbine used a plurality of rotating disks enclosed inside a volute casing and the rotation of the turbine was due to a viscous high-pressured fluid, oil in Tesla experiments, directed tangentially to the disks. Unfortunately this previous art is not suited to capture wind energy for several reasons such as the air viscosity is too low, the normal wind speed is too low and the whole design with a casing enclosure and only one access opening is impractical for wind turbines.
It is thus evident from the above discussion that there is a need for a simpler and/or more efficient wind to electrical energy conversion device.
The present invention is a vertical axis wind turbine, and method of using wind to produce electricity, having a sail assembly having a forward, wind facing, planar tangentially surface coupled directly to a stabilizing downwind tail that redirects wind into an enclosure formed by the rotor blades, and a rotor assembly positioned within a cage enclosure with at least one magnetic elevation bearing that allows the rotor to spin with a minimum of mechanical friction with respect to a stator winding.
The present wind turbine is able to operate in very broad wind conditions, such as velocities up to 100 mph, and frequently changing wind directions. The sail of the present wind turbine provides a reliable and effective means for directing air currents into the rotor assembly, which can be attached directly to a vertical shaft or serve as a rotor to an integrated alternator.
The invention involves various embodiments of a vertical-axis wind turbine. Preferably, the stator windings are designed as a stationary core to the blade assembly(ies) and attached to the cage, therefore residing inside the rotor cylinder. The position of the sail also prevents the disruption of rotation by shielding the rotor vanes from winds counter-directional to their rotation which may occur as the wind shifts. The turbine may be equipped with any number of stator blades; however a preferred embodiment has between four and six blades.
The present invention can also act to convert wind currents into mechanical energy to be used to directly act upon a water pump, or to drive an electrical generator alternator via a shaft coupled to the rotor.
It is thus a preferred object of the present invention to provide a vertical axis wind turbine which enables the capture and conversion of wind energy.
It is a further preferred object of the invention to provide a rotor/stator assembly that is structurally reinforced by a cage that supports a sail and magnetic levitation bearing assembly.
It is a still further preferred object of the invention to provide a rotor/stator assembly that is simply constructed of inexpensive light material and is partially supported and precisely constrained through the use of a magnetic/levitation bearing.
The above mentioned and other features, advantages and objects of this invention, and the manner of attaining them, will become apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Like reference numerals indicate the same or similar parts throughout the several figures.
A complete discussion of the features, functions and/or configuration of the components depicted in the various figures will now be presented. It should be appreciated that not all of the features of the components of the figures are necessarily described. Some of these non discussed features as well as discussed features are inherent from the figures. Other non discussed features may be inherent in component geometry and/or configuration.
Referring to
The top and bottom plates of the turbine assembly 16 have a bearing assembly fastener 33 that is attached to sail assembly struts and allows the front and tail sails 12, 14 to rotate around the pole/shaft 19 center-line. The circular bearing allows the sail assembly to position the front sail surface to face into the wind at precisely the exact angle to capture the optimum wind force for maximum rotor angular momentum. In addition the front sail 12 blocks the oncoming wind from impeding the rotation of the next vane thereby improving rotational performance of the unit. In one embodiment the front sail 12 support structure is connected to the rotor cage utilizing breakaway shear pins that would allow the front sail to fold back against the rotor cage in high wind conditions.
As best seen in
In one form, the vane assemblies 17 are connected to the shaft 19 such that rotation of the vanes 28 rotates the shaft 19 in order to generate electricity. The shaft 19 is connected through suitable gearing 37 held by plate 36 to an alternator/generator 39 held by plate 38 on the base 18 (see, e.g.,
Referring to
In all cases, the electric/electronic power generated is fed to the conversion controller 70 and initially into conversion control module (CMM) 72. The CMM 72 has an embedded CPU and touch screen display 76 to monitor an assortment of transducers and sensors internal to the wind turbine 10 that gathers performance data like temperature, vibration, wind velocity, vector acceleration, electrical parameters, etc. 74. This information can be viewed locally or transmitted to a maintenance center. Online and local connectors are available for download and/or programmatic updates. Proper operation of electrical energy from the alternator and conversion via inverters, D to A, A to D devices 74, battery backup 84, load stabilizing, etc is handled by the CMM 72 and CPU 76. The CMM 72 monitors the rotor magnetic field 80. The stator winding includes an AC/DC regulator voltage control 82. The system 70 may also include a global positioning transmitter/receiver 78.
In further alternate embodiments of the present wind turbine, the sail material used will also consist of a solar collecting surface. Moreover, the present wind turbine assembly can be mounted on an existing pole and/or structure. For example the unit could be positioned above a streetlight pole to power the light and also supply electrical energy to the existing utility grid. The rotor blades on the circumference of the assembly may be designed with a certain angle from the vertical and having a certain twist of the surface to increase the drag and lift effect. The surfaces of the rotor to create the boundary layer effect may be designed in different shapes instead of disks. The rotor vanes and disk openings may have any shape instead of arc sectors. The rotor may be designed to incorporate a shaft that extends to the base of the unit from the rotor housing. This shaft can be connected to a geared transmission for areas of highly variable winds.
The wind turbine can be disposed horizontally or at an angle with respect to the vertical with only one inflow opening facing the wind. Such embodiment may be used in places where the wind is known to have only one direction or it may be used in a configuration where the turbine is placed on objects in motion (such as cars, boats, etc.) to generate the required electrical power.
Although the above description relates to a specific preferred embodiment as presently contemplated by the inventor, it will be understood that the invention in its broad aspect includes mechanical and functional equivalents of the elements described herein. Without limiting the possibilities of alternate embodiments, it is described below some of such functional equivalents of the present vertical axis wind turbine 10.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This patent application claims the benefit of and/or priority to U.S. Provisional Patent Application Ser. No. 61/062,247 filed Jan. 24, 2008, entitled “Power Concentrator Sail and Multi-Axis Wind Turbine” the entire contents of which is specifically incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
61062247 | Jan 2008 | US |