The present invention relates generally to a manner by which to transduce signal energy at a radio device, such as a portable mobile station. More particularly, the present invention relates to an antenna, and an associated methodology, for the radio device.
The antenna is of dimensions permitting its positioning within, or carriage together with, a hand-carriable mobile station while providing operability over a wide range of frequencies. The antenna is formed of a set of antenna patches that are configured together in a tri-dimensional arrangement. The spatial requirements of the antenna are reduced by folding one of the patches to cause contiguous portions thereof to extend in planar directions offset from that of another of the antenna patches. The antenna is operable with a multi-mode radio device that operates at multiple, spaced frequency bands.
Mobile communications have become pervasive throughout modern society. Ready access to a mobile communication system is, for many, a practical necessity. A cellular, or cellular-like communication system is an exemplary mobile radio communication system whose availability is widespread throughout significant portions of the populated areas of the world.
A cellular communication system is constructed generally to be in conformity with operational requirements set forth in an operating specification promulgated by a standards-setting body. The operating specification, amongst other things, defines a radio air interface extending between communication stations, i.e., the network infrastructure and a mobile station, operable in the communication system. Regulatory bodies allocate portions of the electromagnetic spectrum. Different allocations are made for different types of systems, and different regulatory bodies regulate the use of the electromagnetic spectrum in different jurisdictions. And, operating standards associated with different communication systems define operating parameters including parameters associated with the frequencies upon which the radio air interface is defined.
While early implementations of mobile stations used to communicate in a cellular communication system were relatively bulky, and were relatively heavy, advancements in integrated-circuit, processing, and communication technologies have permitted the miniaturization of newer implementations of mobile stations. Mobile stations are now regularly of dimensions permitting their hand-carriage. And, increasingly, mobile stations are constructed to be operable in conformity with the operating requirements of more than one operating standard. Such a mobile station, referred to as a multi-mode mobile station, is capable of operation pursuant to a communication service by way of any communication system with which the multi-mode mobile station is operable.
Miniaturization of a mobile station provided as a result of the technological advancements noted-above has permitted the circuitry required for multi-mode mobile station to be housed in a housing of small dimension. Multi-mode mobile stations are, for example, sometimes of configurations permitting their carriage in a shirt pocket of the user. Miniaturization is provided, not only by reducing the physical dimensions of the circuit paths of the receive and transmit chains of the circuitry of the mobile station, but also through sharing of circuit components between circuit paths used for communications pursuant to the different communication systems.
Miniaturization of antenna elements presents unique challenges, particularly when the antenna element is to form part of a multi-mode mobile station, operable at disparate frequency bands. An antenna element is generally most effective in transducing signal energy when the transducer is of dimensions related to the wavelength of the signal energy that is to be transduced. For instance, antenna lengths corresponding to, or multiples of, one-quarter wavelengths of the signal energy that is to be transduced exhibit good antenna characteristics. When the mobile station forms a multi-mode mobile station that operates at different frequency bands, different sizes of antennas are needed to transduce the signal energy of the different frequencies and wavelengths. As the sizes of housings otherwise required to house the circuitry of a multi-mode mobile station continue to decrease, dimensional requirements of the antenna elements are sometimes a limiting factor limiting further miniaturization of a mobile station. Significant effort has therefore been exerted to construct an antenna, operable over multiple frequency bands, that is also of small dimension, thereby to permit its positioning within the housing of a mobile station.
A PIFA (Planar Inverted-F Antenna) is sometimes utilized to transduce signal energy at a mobile station. Generally, a PIFA is of compact size and is of a low profile while providing for transducing of signal energy at more than one frequency band. A problem typically exhibited with a PIFA, however, is that a PIFA generally exhibits pass bands of narrow bandwidths. A bandwidth of a PIFA is enhanced by configuring the PIFA together with a parasitic element. Such use of a parasitic element, however, increases the dimensions of the antenna. Additionally, tuning of the antenna becomes more difficult due to the additional resonant branches. Also, the branches sometimes introduce EMI (Electromagnetic Interference) that interferes with antenna operation.
An improved antenna structure, of small dimensions, and operable to transduce signal energy at multiple, disparate frequency bands is therefore needed.
It is in light of this background information related to radio communications that the significant improvements of the present invention have evolved.
The present invention, accordingly, advantageously provides an antenna, and an associated methodology for transducing signal energy at a radio device, such as a portable mobile station.
Through operation of an embodiment of the present invention, an antenna is provided for the radio device. The antenna is of compact dimensions that permits its positioning within, or carriage together with, a mobile station. The antenna characteristics of the antenna permit its operation at selected frequency bands over a wide range of frequencies.
The antenna includes a set of antenna patches that are configured together in a tri-dimensional arrangement that extends in multiple planar directions. Reduction in the spatial requirements of the antenna is provided by the tri-dimensional configuration of the antenna. One of the patches of the set of antenna patches is forwarded such that contiguous portions thereof extend in planar directions offset from that of a portion contiguous thereto. The antenna is configured to be operable at disparate frequency bands over a wide range of frequencies.
In another aspect of the present invention, a first patch of the antenna forms a first main radiation element. The first patch is L-shaped, forming an L-shaped patch. The first radiation element is resonant at a frequency band depending upon the length of the patch and its location of connection to the second patch of the antenna. The first main radiation element forming the L-shaped patch includes both a feed point connection and a ground connection that are connectable with corresponding portions of the circuitry of the mobile station. Signal energy generated at the mobile station circuitry is provided to the antenna at the feed point connection, and signal energy transduced into electrical form at the antenna is provided to the transceiver circuitry at the feed point connection. The L-shaped patch includes a lengthwise-extending leg piece and a foot piece extending outwardly therefrom. Appropriate selection of the dimensions of the leg piece and of the foot piece are determinative, together with the location of the connection of the L-shaped patch with the second antenna patch, of the characteristics of the first antenna patch.
In another aspect of the present invention, the second antenna patch forms a folded patch, formed of multiple folded portions. A first portion is contiguous to, and integral with, the L-shaped patch forming the first antenna patch. The first portion is folded to extend in a planar direction offset from that of the planar direction in which the L-shaped first antenna patch extends. The first folded portion of the folded antenna patch extends, e.g., in a planar direction substantially perpendicular to the planar direction in which the L-shaped, first antenna patch extends. The folded antenna patch further includes a second folded portion, formed contiguous to, and integral with, the first folded portion. The second folded portion is folded to extend in a direction offset from the planar direction in which the first folded section extends. The second folded portion extends in a direction, e.g., substantially perpendicular to the planar direction in which the first folded portion extends. And, the folded antenna patch further includes a third folded portion, formed contiguous to and integral with the second folded portion. The third folded portion extends, e.g., in a direction substantially perpendicular to the planar direction in which the second folded portion extends. Thereby, the spatial requirements of the second antenna patch are reduced relative to the space that the second antenna patch would be required to be provided if the antenna were not folded.
In another aspect of the present invention, the folded, second antenna patch includes a tuning strip, tunable to be of a length to cause the antenna patch to include resonant frequencies at a desired frequency range.
In one implementation, the antenna forms a pent-band antenna, capable of operation at five disparate frequency bands, including the 850, 900, 1800, 1900, and 2200 MHz frequency bands. In other implementations, the antenna is configured to be resonant at other, and other numbers of, frequency bands. When connected to transceiver circuitry capable of operating in conformity with communication systems at the corresponding frequencies, the antenna permits signal energy to be transduced at any of the resonant frequencies. Due to its compact size, the antenna facilitates increased miniaturization of a mobile station, permitting its positioning within the housing of the mobile station.
In these and other aspects, therefore, an antenna, and an associated methodology is provided for a radio communication device. A first patch forms a first radiation element. The first patch is defined in a first planar direction and is resonant at least at a first higher frequency band. A second patch forms a second resonant element. The second patch includes a contiguous first portion, contiguous and integral with, the first patch. The contiguous first portion is folded to be upstanding beyond the first planar direction in which the first patch extends. Thereby, the contiguous first portion extends in a second planar direction. The second patch is resonant at a lower frequency band and a second higher frequency band. The first and second higher frequency bands are, e g., of corresponding, overlapping, or differing frequencies.
Referring first, therefore, to
A plurality of radio access networks (RANs), radio access networks 16, 18, 22, 24, and 26 are illustrated in
The mobile station sends data upon the radio air interface 14 and receives data communicated thereon. Transceiver circuitry 36 is embodied at the mobile station, formed of a transmit part and a receive part to operate upon data that is to be communicated by the mobile station or data that is received thereat. The receive and transmit chains forming the receive and transmit parts, respectively, of the transceiver circuitry are operable in conformity with the operating standards and protocols associated with, and defining, the respective systems. The transceiver circuitry of the mobile station is coupled to an antenna 42 of an embodiment of the present invention. The antenna is constructed to permit its operation to transduce signal energy at all of the frequency bands at which the mobile station transceiver circuitry is operable. That is to say, in the exemplary implementation, the antenna 42 operates to transduce signal energy at any of the 850, 900, 1800, 1900, and 2200 MHz frequency bands. In the exemplary implementation, the antenna is positioned within the housing 44 of the mobile station to be supportively enclosed by the housing. Howsoever positioned, the antenna is of small dimensions, facilitating its carriage together with the mobile station at any of the frequencies at which the mobile station operates.
The antenna includes two antenna patches, a first antenna patch 58 and a second antenna patch 62. The first antenna patch 58 here comprises an L-shaped patch including a lengthwise-extending leg part 64 and an outwardly-extending foot part 66. An outer lengthwise dimension of the L-shaped patch extends in a linear direction along the entire length of the patch. An inner lengthwise dimension, also extending in the same linear direction, is of a length that extends to the foot part and is of a length, in part, dependent upon the positioning and configuration of the foot part. The first antenna patch is connected to the transceiver circuitry (shown in
The second antenna patch 62 forms a folded patch with three portions, a first portion 78, a second portion 82, and a third portion 84 defined by the folding lines 48, 52, and 54, respectively. That is to say, the portion 78, 82, and 84 are defined by the folding of the antenna patch at the fold lines. The first portion is constructed to be contiguous to, and integral with, portions of the first antenna patch 58. When folded about the fold line 48, the portion 78 extends in a second planar direction, offset from a first planar direction in which the first antenna patch extends. The planar directions are offset, e.g., by ninety degree angles to be perpendicular to one another.
The second portion 82 is formed contiguous to, and integral with, the first portion 78. Folding of the second portion about the fold line 52 causes the second portion to extend in a third planar direction, offset from the second planar direction in which the portion 78 extends. In the exemplary implementation, the angle formed by folding of the antenna patch about the fold line 54 forms a substantially perpendicular angle to cause the third portion to extend in a planar direction substantially perpendicular to the planar direction of the second portion. The three portions of the second antenna patch and the first antenna patch define four planar directions that, when perpendicular, together define a rectangular shape.
The second portion 82 of the antenna patch 62 includes a tuning strip that is of a length that is determinative of one of the frequency ranges, and hence bands, at which the antenna is resonant. And, the length of the patch, in the lengthwise direction, independently determines resonant frequencies at a lower frequency band and at a high frequency band. Tuning of the lower frequency is provided by the selection, or change, of the configuration of the tuning strip.
Analogously, in
First, and as indicated by the block 144, a first radiation element is formed, comprised of a first patch defined to extend in a first planar direction and resonant at a first frequency band. Then, and as indicated by the block 146, a second radiation element is formed. The second radiation element includes a folded loop having a contiguous first portion. The contiguous first portion is contiguous and integral with the first patch. The second radiation element also includes a contiguous second portion, contiguous and integral with the first portion. The contiguous first portion is folded to be upstanding beyond the first patch in a second planar direction and the contiguous second portion is folded to extend in a third planar direction, offset from the second planar direction. The second radiation element is resonant at a second frequency band. The second radiation element further includes a contiguous third portion, contiguous and integral with the contiguous second portion. The contiguous third portion extends in a fourth planar direction, offset from the third planar direction. In one implementation, the element is formed such that the second and fourth planar directions are substantially parallel and such that the third planar direction is substantially parallel to the first planar direction in which the first element extends.
Then, and as indicated by the block 148, the folded loop is tuned. And, as indicated by the block 152, signal energy is transduced within any of the first and second frequency bands at any of the first patch and the folded loop.
Due to the tri-dimensional configuration of the antenna, a multi-band antenna is formed, of compact configuration, facilitating its use together with a mobile station, or other portable radio device.
Presently preferred embodiments of the invention and many of its improvements and advantages have been described with a degree of particularity. The description is of preferred examples of implementing the invention, and the description of preferred examples is not necessarily intended to limit the scope of the invention. The scope of the invention is defined by the following claims.